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Sheet 5 solutions

1. a)

J(y) =
∫ 1

0

y′dx, y(0) = 0, y(1) = 1.

Since L = y′, Euler equation is

− d

dx
(1) = 0

this is identically satisfied and so tells us nothing.

b)

J(y) =
∫ 1

0

yy′dx, y(0) = 0, y(1) = 1.

Since L = yy′, Euler equation is

y′ − d

dx
(y) = 0

this is again identically satisfied and so tells us nothing.

c)

J(y) =
∫ 1

0

xyy′dx, y(0) = 0, y(1) = 1.

Since L = xyy′, Euler equation is

xy′ − d

dx
(xy) = 0 ⇒ xy′ − y − xy′ = 0

⇒ y = 0.

This does not satisfy y(1) = 1.

2.

J(y) =
∫ b

a

(x2y′2 + y2)dx,

Since L = x2y′2 + y2, Euler equation is

2y − d

dx
(2x2y′) = 0 ⇒ 2y − 4xy′ − 2x2y′′ = 0

⇒ x2y′′ + 2xy′ − y = 0.

This is an ODE of Eluer type: for a solution try y = xk.

So y′ = kxk−1, y′′ = k(k − 1)xk−2 an substituting into the D.E. gives

k(k − 1) + 2k − 1 = 0 ⇒ k2 + k − 1 = 0

⇒
(

k +
1
2

)2

− 5
4

= 0 ⇒ k = −1
2
±
√

5
2

.

So general solution is
y = x−1/2(Ax

√
5/2 + Bx−

√
5/2).

The coefficinets A and B are given by the values at the fixed end points.
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3. Theorem:

If a function y gives an extreme value of the functional

J(y) =
∫ b

a

L(x, y, y′)dx

for y ∈ F = {y ∈ C2[a, b]}, then y satisfies the Euler equation

Ly(x, y, y′)− d

dx
Ly′(x, y, y′) = 0,

and the boundary conditions at a and b are

Ly′(a, y(a), y′(a)) = 0, Ly′(b, y(b), y′(b)) = 0.

holds at x = b.

Proof:

As for the case in which both end points are fixed, we consider V ′(0) = 0 where

V (ε) =
∫ b

a

L(x, y + εh, y′ + εh′)dx

with h ∈ C2[a, b], but now without any conditions on h(a) or h(b). As in the proof of the theorem for
fixed end points we have

V ′(0) = 0 ⇔
∫ b

a

{Ly(x, y, y′)h(x) + Ly′(x, y, y′)h′(x)} dx = 0.

After in integrating by parts we have∫ b

a

{Ly(x, y, y′)h(x) + Ly′(x, y, y′)h′(x)} dx = 0

⇔
∫ b

a

{
Ly(x, y, y′) +

d

dx
Ly′(x, y, y′)

}
h(x)dx + [Ly′(x, y, y′)h(x)]ba = 0 (1)

A necessary condition for an extremal is that this should hold for all admissible h. In particular it
should hold for h(a) = h(b) = 0. Hence we get that

[Ly′(x, y, y′)h(x)]ba = 0

and thus ∫ b

a

{
Ly(x, y, y′) +

d

dx
Ly′(x, y, y′)

}
h(x)dx = 0.

The fundamental lemma of calculus of variations then gives

Ly(x, y, y′) +
d

dx
Ly′(x, y, y′) = 0.

So returning to (1) we have

[Ly′(x, y, y′)h(x)]ba = 0 for all admissible h.

In particular this holds for h with

h(a) 6= 0 and h(b) = 0 ⇒ Ly′(a, y(a), y′(a)) = 0.

It also holds for h with h(a) = 0 and h(b) 6= 0

⇒ Ly′(b, y(b), y′(b)) = 0.
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4. a)

J(y) =
∫ 1

0

(y′2 + y2)dx y(0) = 1, y(1) unspecified.

The Lagrangian is L = y′2 + y2 so the Euler equation is

2y − d

dx
(2y′) = 0 ⇒ y′′ − y = 0

⇒ y = Acosh x + Bsinh x.

The boundary condition y(0) = 1 gives
1 = A

and hence we have
y = cosh x + Bsinh x.

The free end-point condition is

Ly′(1, y(1), y′(1)) = 0 ⇔ 2y′(1) = 0 ⇒ 0 = sinh 1 + Bcosh 1

⇒ B = −tanh 1.

So
y = cosh x− tanh 1sinh x.

b)

J(y) =
∫ 1

0

(y′2 + 2y′y + 2y′ + y)dx y(0) = 2, y(1) unspecified.

The Lagrangian is L = y′2 + 2y′y + 2y′ + y so the Euler equation is

2y′ + 1− d

dx
((2y′ + 2y + 2) = 0 ⇒ 2y′′ − 1 = 0

⇒ y =
1
4
x2 + Ax + B.

Since y(0) = 2 we have B = 2 and so

y = 2 +
1
4
x2 + Ax.

The free end-point condition is

Ly′(1, y(1), y′(1)) = 0 ⇔ 2y′(1) + 2y(1) + 2 = 0 ⇒ 2(1/2 + A) + 2(2 + 1/4 + A) + 2 = 0

⇒ 1 + 2A + 4 + 1/2 + 2A + 2 = 0 ⇒ A = −15/8.

So
y =

1
4
x2 − 15

8
x + 2.

5. The Euler equation is

Ly −
d

dx
(Ly′) +

d2

dx2
(Ly′′) = 0

with L = 1 + y′′2. This gives

0− 0 +
d2

dx2
(2y′′) = 0 ⇒ y′′′′ = 0

⇒ y = A + Bx + Cx2 + Dx3.

Since
y′ = B + 2Cx + 3Dx2

the boundary conditions give

A = 0, B = 0, A + B + C + D = 1, B + 2C + 3D = 1

which yield
A = 0, B = 0, C = 2, D = −1

and so the extremal is
y = 2x2 − x3.
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