Methods of Applied Mathematics

Sheet 5 solutions

1. a)

$$J(y) = \int_0^1 y' dx$$
, $y(0) = 0$, $y(1) = 1$.

Since L = y', Euler equation is

$$-\frac{d}{dx}(1) = 0$$

this is identically satisfied and so tells us nothing.

b)

$$J(y) = \int_0^1 yy'dx, \quad y(0) = 0, \ y(1) = 1.$$

Since L = yy', Euler equation is

$$y' - \frac{d}{dx}(y) = 0$$

this is again identically satisfied and so tells us nothing.

c)

$$J(y) = \int_0^1 xyy'dx, \quad y(0) = 0, \quad y(1) = 1.$$

Since L = xyy', Euler equation is

$$xy' - \frac{d}{dx}(xy) = 0 \implies xy' - y - xy' = 0$$

$$\Rightarrow y = 0.$$

This does not satisfy y(1) = 1.

2.

$$J(y) = \int_{a}^{b} (x^{2}y'^{2} + y^{2})dx,$$

Since $L = x^2y'^2 + y^2$, Euler equation is

$$2y - \frac{d}{dx}(2x^2y') = 0 \implies 2y - 4xy' - 2x^2y'' = 0$$
$$\Rightarrow x^2y'' + 2xy' - y = 0.$$

This is an ODE of Eluer type: for a solution try $y = x^k$.

So $y' = kx^{k-1}$, $y'' = k(k-1)x^{k-2}$ an substituting into the D.E. gives

$$k(k-1) + 2k - 1 = 0 \implies k^2 + k - 1 = 0$$

$$\Rightarrow \left(k+\frac{1}{2}\right)^2 - \frac{5}{4} = 0 \ \Rightarrow \ k = -\frac{1}{2} \pm \frac{\sqrt{5}}{2}.$$

So general solution is

$$y = x^{-1/2} (Ax^{\sqrt{5}/2} + Bx^{-\sqrt{5}/2}).$$

The coefficinets A and B are given by the values at the fixed end points.

3. Theorem:

If a function y gives an extreme value of the functional

$$J(y) = \int_{a}^{b} L(x, y, y') dx$$

for $y \in F = \{y \in C^2[a, b]\}$, then y satisfies the Euler equation

$$L_y(x, y, y') - \frac{d}{dx} L_{y'}(x, y, y') = 0,$$

and the boundary conditions at a and b are

$$L_{y'}(a, y(a), y'(a)) = 0, L_{y'}(b, y(b), y'(b)) = 0.$$

holds at x = b.

Proof:

As for the case in which both end points are fixed, we consider V'(0) = 0 where

$$V(\varepsilon) = \int_{a}^{b} L(x, y + \varepsilon h, y' + \varepsilon h') dx$$

with $h \in C^2[a, b]$, but now without any conditions on h(a) or h(b). As in the proof of the theorem for fixed end points we have

$$V'(0) = 0 \Leftrightarrow \int_{a}^{b} \{L_{y}(x, y, y')h(x) + L_{y'}(x, y, y')h'(x)\} dx = 0.$$

After in integrating by parts we have

$$\int_{a}^{b} \left\{ L_{y}(x, y, y')h(x) + L_{y'}(x, y, y')h'(x) \right\} dx = 0$$

$$\Leftrightarrow \int_{a}^{b} \left\{ L_{y}(x, y, y') + \frac{d}{dx} L_{y'}(x, y, y') \right\} h(x) dx + \left[L_{y'}(x, y, y')h(x) \right]_{a}^{b} = 0$$
(1)

A necessary condition for an extremal is that this should hold for all admissible h. In particular it should hold for h(a) = h(b) = 0. Hence we get that

$$[L_{y'}(x, y, y')h(x)]_a^b = 0$$

and thus

$$\int_{a}^{b} \left\{ L_{y}(x, y, y') + \frac{d}{dx} L_{y'}(x, y, y') \right\} h(x) dx = 0.$$

The fundamental lemma of calculus of variations then gives

$$L_y(x, y, y') + \frac{d}{dx} L_{y'}(x, y, y') = 0.$$

So returning to (1) we have

$$[L_{y'}(x, y, y')h(x)]_a^b = 0$$
 for all admissible h .

In particular this holds for h with

$$h(a) \neq 0$$
 and $h(b) = 0 \Rightarrow L_{y'}(a, y(a), y'(a)) = 0.$

It also holds for h with h(a) = 0 and $h(b) \neq 0$

$$\Rightarrow L_{y'}(b, y(b), y'(b)) = 0.$$

$$J(y) = \int_0^1 (y'^2 + y^2) dx$$
 $y(0) = 1$, $y(1)$ unspecified.

The Lagrangian is $L = y'^2 + y^2$ so the Euler equation is

$$2y - \frac{d}{dx}(2y') = 0 \implies y'' - y = 0$$

\Rightarrow y = A\cosh x + B\sinh x.

The boundary condition y(0) = 1 gives

$$1 = A$$

and hence we have

$$y = \cosh x + B \sinh x$$
.

The free end-point condition is

$$L_{y'}(1, y(1), y'(1)) = 0 \Leftrightarrow 2y'(1) = 0 \Rightarrow 0 = \sinh 1 + B \cosh 1$$

 $\Rightarrow B = -\tanh 1.$

So

$$y = \cosh x - \tanh 1 \sinh x$$
.

$$J(y) = \int_0^1 (y'^2 + 2y'y + 2y' + y)dx \quad y(0) = 2, \ y(1) \text{ unspecified.}$$

The Lagrangian is $L = y'^2 + 2y'y + 2y' + y$ so the Euler equation is

$$2y' + 1 - \frac{d}{dx}((2y' + 2y + 2)) = 0 \implies 2y'' - 1 = 0$$
$$\implies y = \frac{1}{4}x^2 + Ax + B.$$

Since y(0) = 2 we have B = 2 and so

$$y = 2 + \frac{1}{4}x^2 + Ax.$$

The free end-point condition is

$$L_{y'}(1, y(1), y'(1)) = 0 \Leftrightarrow 2y'(1) + 2y(1) + 2 = 0 \Rightarrow 2(1/2 + A) + 2(2 + 1/4 + A) + 2 = 0$$

 $\Rightarrow 1 + 2A + 4 + 1/2 + 2A + 2 = 0 \Rightarrow A = -15/8.$

So

$$y = \frac{1}{4}x^2 - \frac{15}{8}x + 2.$$

5. The Euler equation is

$$L_y - \frac{d}{dx}(L_{y'}) + \frac{d^2}{dx^2}(L_{y''}) = 0$$

with $L = 1 + y''^2$. This gives

$$0 - 0 + \frac{d^2}{dx^2}(2y'') = 0 \implies y'''' = 0$$

$$\implies y = A + Bx + Cx^2 + Dx^3.$$

Since

$$y' = B + 2Cx + 3Dx^2$$

the boundary conditions give

$$A = 0$$
, $B = 0$, $A + B + C + D = 1$, $B + 2C + 3D = 1$

which yield

$$A = 0, B = 0, C = 2, D = -1$$

and so the extremal is

$$u = 2x^2 - x^3.$$