
Methods of Applied Mathematics

Sheet 4 solutions

1. The direct method puts x = x0 + εx1 + · · · and substitutes this into the equation to get

ε(x0 + εx1 + · · ·)3 + (x0 + εx1 + · · ·)− 2 = 0

Coefficient of ε0: x0 − 2 = 0 ⇒ x0 = 2.

Coefficient of ε1: x3
0 + x1 = 0 ⇒ x1 = −x3

0 = −8.

This gives the root near 2 to be 2− 8ε up to first order correction.

Now rescale, using x̄ = x/δ to get
εδ3x̄3 + δx̄− 2 = 0.

Possible balances are
(a) εδ3 ∼ δ ⇒ δ ∼ 1/

√
ε

and
(b) εδ3 ∼ 1 ⇒ δ ∼ ε−1/3.

(c) δ ∼ 1 ⇒ no scaling and hence reject.

First we try (b) and hence we set δ = 1/
√

3ε to get

x̄3 +
1√
3ε

x̄− 2 = 0 ⇒
√

3εx̄3 + x̄− 2
√

3ε = 0.

Setting x̄ = x̄0 +
√

3εx̄1 + (
√

3ε)2x̄2 = · · · gives the following zeroth order approximation

x̄0 = 0

we reject this choice as gives an approximate solution this is not of moderate size.

Now we try (a) and put δ = 1/
√

ε to get

1√
ε
x̄3 +

1√
ε
x̄− 2 = 0 ⇒ x̄3 = x̄− 2

√
ε = 0.

Now take x̄ = x̄0 +
√

εx̄1 + (
√

ε)2x̄2 = · · · to get

(x̄0 +
√

εx̄1 + · · ·)3 + (x̄0 +
√

εx̄1 + · · ·)− 2
√

ε = 0.

Coefficient (
√

ε)0: x̄3
0 + x̄0 = 0 ⇒ x̄0 = ±i.

Coefficient (
√

ε)1: 3x̄2
0x̄1 + x̄1 − 2 = 0 ⇒ x̄1 = 2

3x̄2
0+1

= −1.

So (to first order), x̄ = ±i −
√

ε. In terms of original variables this gives ± i√
ε
− 1 for the other two

roots.

Up to order retained, the product of the roots is

(2− 8ε)(−1 +
i√
ε
)(−1− i√

ε
) = (2− 8ε)(1 +

1
ε
) = 2 +

2
ε
− 8ε− 8 =

2
ε
− 6− 8ε.

Since the product of the roots of a polynomial equation anxn + an−1x
n−1 + · · ·+ a1x + a0 = 0 should

be equal to a0/an we see that this is true to leading order since a0/an = 2/ε.

2. (a)

εẍ + 2ẋ + ex = 0, 0 < ε << 1, x(0) = 0, x(1) = 0
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Direct method gives
2ẋ0 + ex0 = 0, x0(0) = 0, x0(1) = 0

as ex0+εx1+··· = ex0eεx1+··· = ex0(1 + · · ·).
So

2e−x0 ẋ0 + 1 = 0 ⇒ 2e−x0
dx0

dt
= −1 ⇒

∫
2e−x0dx0 = −

∫
dt

⇒ −2e−x0 + t = A ⇒ x0 = −ln
(

t−A

2

)
.

A = −1 gives x0(1) = 0 but then x0(0) = 0 is not satisfied. Assume that there is a boundary layer at
0 and that we have found

xouter(t) = ln
2

t + 1
.

Now rescale using s = t/δ as independent variable. The equation becomes

ε

δ2
x′′ +

2
δ
x′ + ex = 0 dash =

d

ds

with x(0) = 0 as boundary condition. Possible balances are

(a)
ε

δ2
∼ 1

δ
⇒ δ ∼ ε

(b)
ε

δ2
∼ 1 ⇒ δ ∼

√
ε

(c)
2
δ
∼ 1 ⇒ δ ∼ 1 ⇒ no scaling and hence reject.

First we try (b) and set δ =
√

ε to get

x′′ +
2√
ε
x′ = ex

⇒
√

εx′′ + 2x′ =
√

εex.

We reject this choice as it gives a reduction in order for the equation satisfied by the zeroth order
approximation.

Now we try (a) and put δ = ε to get
x′′ + 2x′ = εex.

Zeroth order approximation satisifies

x′′0 + 2x′0 = 0, x0(0) = 0

General solution is x0(s) = A + Be−2s and the boundary condition implies B = −A. So we have

xinner(s) = A(1− e−2s).

⇒ xinner(t) = A(1− e−2t/ε).

For matching use the intermediate variable u = t/
√

ε. So t = u
√

ε and

xouter = ln
(

2
u
√

ε + 1

)
, xinner = A(1− e−2u/

√
ε).

For a match we need

lim
ε↓0

xouter = lim
ε↓0

xinner = common limit ⇒ ln 2 = A = common limit.
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So the approximation on [0, 1] is

xa(t) = xouter + xinner − common limit

= ln
2

t + 1
+ ln 2{1− e−2t/ε} − ln 2

= ln
2

t + 1
− e−2t/ε ln 2.

(b)

εẍ + ẋ = 2(1− t), 0 < ε << 1, x(0) = 1, x(1) = 1

Direct method gives
ẋ0 = 2(1− t), x0(0) = 1, x0(1) = 1

for the zeroth order approximation.

The solution of the ODE is
x0 = 2t− t2 + A.

Using the boundary condition x0(1) = 1 gives A = 0 and hence x0 = 2t − t2 which does not satisfy
x0(0) = 1.

Assume we have an outer solution
xouter(t) = 2t− t2

and look for an inner solution valid near t = 0 by rescaling the independent variable: s = t/δ.

The equation becomes
ε

δ2
x′′ +

1
δ
x′ = 2− 2δs dash =

d

ds

with x(0) = 1 as boundary condition. There are 4 coefficients ε
δ2 , 1

δ , 2, 2δ and hence 6 possible
balances are

(a)
ε

δ2
∼ 1

δ
⇒ δ ∼ ε

(b)
ε

δ2
∼ 2 ⇒ δ ∼

√
ε

(c)
ε

δ2
∼ 2δ ⇒ δ ∼ ε1/3

(d)
1
δ
∼ 2 ⇒ δ ∼ 1

(e)
1
δ
∼ 2δ ⇒ δ ∼ 1

(f) 2 ∼ 2δ ⇒ δ ∼ 1

We reject (d), (e) and (f) and try (a), (b) and (c) as possible choices.

Possibility (b): Setting δ =
√

ε gives

x′′ +
1√
ε
x′ = 2− 2

√
εs

⇒
√

εx′′ + x′ = 2
√

ε− 2εs

This gives x′0 = 0 which we reject as it gives a reduction in order for the zeroth order approximation.

Possibility (c): Setting δ = ε1/3 gives

ε1/2x′′ +
1

ε1/3
x′ = 2− 2εs

⇒ ε2/3x′′ + x′ = 2ε1/3 − 2ε2/3s

This also gives x′0 = 0 so we reject it too.
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Possibility (a): Setting δ = ε gives
1
ε
x′′ +

1
ε
x′ = 2− 2εs

⇒ x′′ + x′ = 2ε− 2ε2s

⇒ x′′0 + x′0 = 0 which looks o.k.

General solution is x0(s) = A + Be−s and the boundary condition x0(0) = 1 implies A + B = 1 i.e.
B = 1−A so

x0(s) = A + (1−A)e−s

⇒ x0(t) = A + (1−A)e−t/eps

For matching we use the intermediate varaible u =
√

st = t/
√

ε and require that

lim
ε↓0

xouter = lim
ε↓0

xinner = common limit

⇒ lim
ε↓0

(2u
√

ε− εu2) = lim
ε↓0

(A + (1−A)e−u/
√

ε) ⇒ 0 = A.

So the common limit is 0 and

xa(t) = xouter + xinner − common limit

= 2t− t2 + e−t/ε.

3.
εẍ− ẋ = 2t, x(0) = 1, x(1) = 1

The direct method yields
−ẋ0 = 2t, x0(0) = 1, x0(1) = 1.

Proceeding as in the lectures (i.e. using the boundary condition at t = 1 and assuming a boundary
layer at t = 0) gives

xouter = 2− t2.

For the inner solution, rescale using s = t/δ. The equation becomes

ε

δ2
x′′ − 1

δ
x′ = 2δs (dash =

d

ds
)

with x(0) = 1.

There are 3 possible balances:

(a)
ε

δ2
∼ 1

δ
⇒ δ ∼ ε possible

(b)
ε

δ2
∼ 2δ ⇒ δ ∼ ε1/3 possible

(c)
1
δ
∼ 2δ ⇒ δ ∼ 1 reject

Possibility (b) implies (putting δ = ε1/3)

ε1/3x′′ − 1
ε1/3

x′ = 2ε1/3s

⇒ ε2/3x′′ − x′ = 2ε2/3s

⇒ −x′0 = 0 which is first order (and hence is a reduction in order) so reject (b).

Possibility (a) implies (putting δ = ε)
1
ε
x′′ − 1

ε
x′ = 2εs

⇒ x′′ − x′ = 2ε2s ⇒ x′′0 − x′0 = 0.
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This is second order, so looks o.k. and has general solution

x0(s) = A + Bes.

The boundary condition x(0) = 1 implies A + B = 1 ⇒ B = 1−A, so

x0(s) = A + (1−A)es

⇒ x0(t) = A + (1−A)et/ε

For matching we use the intermediate variable

u =
√

st = t/
√

ε

and the condition that
lim
ε↓0

xouter = lim
ε↓0

xinner = common limit

⇒ lim
ε↓0

(2− εu2) = lim
ε↓0

(A + (1−A)e
u√
ε ) = common limit.

This fails as the limit on the left is finite and the one on the right is infinite.

The assumption that the boundary layer is at t = 0 is incorrect. If we replace the independent variable
by t̃ = 1− t, this has the effect of swapping the end points so that t = 1 becomes t̃ = 0. The problem
becomes

εẍ + ẋ = 2(1− t̃), x(0) = 1, x(1) = 1,

where t̃ is now the independent variable and dots denote d/dt̃. This is the problem of Ex. 2(b) and
was discussed above.

4. a)
εẍ + (t + 1)ẋ + x = 0, x(0) = 0, x(1) = 1.

Comparison with theorem gives p(t) = t + 1 and q(t) = 1 so p and q are cntinous on [0, 1] with
p(t) > 0 for t ∈ [0, 1] as required.
The theorem gives

xouter = exp
(∫ 1

t

dτ

τ + 1
dτ

)
= exp([ln(τ + 1)]1t )

= exp ln
(

2
t + 1

)
=

2
t + 1

.

and xinner = A + (0−A)e−t/ε where

A = exp
(∫ 1

0

dτ

τ + 1

)
= 2.

So xinner(t) = 2− 2e−t/ε.
Zeroth order approximation for t ∈ [0, 1] is

xa(t) = xinner(t) + xouter −A =
2

t + 1
− 2e−t/ε.

b)
εẍ + (cosh t)ẋ− x = 0, x(0) = 1, x(1) = 1.

Comparison with theorem gives p(t) = cosh t and q(t) = −1 so p and q are cntinous on [0, 1] with
p(t) > 0 for t ∈ [0, 1] as required.
The theorem gives

xouter = exp
(∫ 1

t

− dτ

cosh τ

)
= exp

(
−

∫ 1

t

sechτdτ

)
.

5



Since −
∫ 1

t
sechτdτ = −[arctan(sinh τ)]1t = arctan(sinh t)− arctan(sinh 1) so

xouter = exp{arctan(sinh t)− arctan(sinh 1)}.

Also the theorem gives xinner = A + (0−A)e−t/ε where

A = exp
(
−

∫ 1

0

dτ

cosh τ

)
= exp{− arctan(sinh 1)}.

So the zeroth order approximation for t ∈ [0, 1] is

xa(t) = xinner(t) + xouter −A

= exp{arctan(sinh t)− arctan(sinh 1)}+ (1− exp{− arctan(sinh 1)})e−t/ε

= e−t/ε + e− arctan(sinh 1)(earctan(sinh t) − e−t/ε).
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