Methods of Applied Mathematics

Sheet 4 solutions

1. The direct method puts $x = x_0 + \varepsilon x_1 + \cdots$ and substitutes this into the equation to get

$$\varepsilon(x_0 + \varepsilon x_1 + \cdots)^3 + (x_0 + \varepsilon x_1 + \cdots) - 2 = 0$$

Coefficient of ε^0 : $x_0 - 2 = 0 \implies x_0 = 2$.

Coefficient of ε^1 : $x_0^3 + x_1 = 0 \implies x_1 = -x_0^3 = -8$.

This gives the root near 2 to be $2-8\varepsilon$ up to first order correction.

Now rescale, using $\bar{x} = x/\delta$ to get

$$\varepsilon \delta^3 \bar{x}^3 + \delta \bar{x} - 2 = 0.$$

Possible balances are

(a)
$$\varepsilon \delta^3 \sim \delta \implies \delta \sim 1/\sqrt{\varepsilon}$$

and

(b)
$$\varepsilon \delta^3 \sim 1 \Rightarrow \delta \sim \varepsilon^{-1/3}$$
.

(c) $\delta \sim 1 \Rightarrow$ no scaling and hence reject.

First we try (b) and hence we set $\delta = 1/\sqrt{3}\varepsilon$ to get

$$\bar{x}^3 + \frac{1}{\sqrt{3}\varepsilon}\bar{x} - 2 = 0 \implies \sqrt{3}\varepsilon\bar{x}^3 + \bar{x} - 2\sqrt{3}\varepsilon = 0.$$

Setting $\bar{x} = \bar{x}_0 + \sqrt{3}\varepsilon\bar{x}_1 + (\sqrt{3}\varepsilon)^2\bar{x}_2 = \cdots$ gives the following zeroth order approximation

$$\bar{x}_0 = 0$$

we reject this choice as gives an approximate solution this is not of moderate size.

Now we try (a) and put $\delta = 1/\sqrt{\varepsilon}$ to get

$$\frac{1}{\sqrt{\varepsilon}}\bar{x}^3 + \frac{1}{\sqrt{\varepsilon}}\bar{x} - 2 = 0 \implies \bar{x}^3 = \bar{x} - 2\sqrt{\varepsilon} = 0.$$

Now take $\bar{x} = \bar{x}_0 + \sqrt{\varepsilon}\bar{x}_1 + (\sqrt{\varepsilon})^2\bar{x}_2 = \cdots$ to get

$$(\bar{x}_0 + \sqrt{\varepsilon}\bar{x}_1 + \cdots)^3 + (\bar{x}_0 + \sqrt{\varepsilon}\bar{x}_1 + \cdots) - 2\sqrt{\varepsilon} = 0.$$

Coefficient $(\sqrt{\varepsilon})^0$: $\bar{x}_0^3 + \bar{x}_0 = 0 \implies \bar{x}_0 = \pm i$.

Coefficient $(\sqrt{\varepsilon})^1$: $3\bar{x}_0^2\bar{x}_1 + \bar{x}_1 - 2 = 0 \implies \bar{x}_1 = \frac{2}{3\bar{x}_0^2 + 1} = -1$.

So (to first order), $\bar{x} = \pm i - \sqrt{\varepsilon}$. In terms of original variables this gives $\pm \frac{i}{\sqrt{\varepsilon}} - 1$ for the other two roots.

Up to order retained, the product of the roots is

$$(2-8\varepsilon)(-1+\frac{i}{\sqrt{\varepsilon}})(-1-\frac{i}{\sqrt{\varepsilon}}) = (2-8\varepsilon)(1+\frac{1}{\varepsilon}) = 2+\frac{2}{\varepsilon}-8\varepsilon-8 = \frac{2}{\varepsilon}-6-8\varepsilon.$$

Since the product of the roots of a polynomial equation $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0$ should be equal to a_0/a_n we see that this is true to leading order since $a_0/a_n = 2/\varepsilon$.

2. (a)

$$\varepsilon \ddot{x} + 2\dot{x} + e^x = 0$$
, $0 < \varepsilon << 1$, $x(0) = 0$, $x(1) = 0$

Direct method gives

$$2\dot{x}_0 + e^{x_0} = 0$$
, $x_0(0) = 0$, $x_0(1) = 0$

as $e^{x_0 + \varepsilon x_1 + \dots} = e^{x_0} e^{\varepsilon x_1 + \dots} = e^{x_0} (1 + \dots).$

So

$$2e^{-x_0}\dot{x}_0 + 1 = 0 \implies 2e^{-x_0}\frac{dx_0}{dt} = -1 \implies \int 2e^{-x_0}dx_0 = -\int dt$$
$$\Rightarrow -2e^{-x_0} + t = A \implies x_0 = -\ln\left(\frac{t - A}{2}\right).$$

A = -1 gives $x_0(1) = 0$ but then $x_0(0) = 0$ is not satisfied. Assume that there is a boundary layer at 0 and that we have found

$$x_{\text{outer}}(t) = \ln \frac{2}{t+1}.$$

Now rescale using $s = t/\delta$ as independent variable. The equation becomes

$$\frac{\varepsilon}{\delta^2}x'' + \frac{2}{\delta}x' + e^x = 0$$
 dash = $\frac{d}{ds}$

with x(0) = 0 as boundary condition. Possible balances are

$$(a) \quad \frac{\varepsilon}{\delta^2} \sim \frac{1}{\delta} \ \Rightarrow \ \delta \sim \varepsilon$$

(b)
$$\frac{\varepsilon}{\delta^2} \sim 1 \Rightarrow \delta \sim \sqrt{\varepsilon}$$

(c) $\frac{2}{\delta} \sim 1 \implies \delta \sim 1 \implies$ no scaling and hence reject.

First we try (b) and set $\delta = \sqrt{\varepsilon}$ to get

$$x'' + \frac{2}{\sqrt{\varepsilon}}x' = e^x$$

$$\Rightarrow \sqrt{\varepsilon}x'' + 2x' = \sqrt{\varepsilon}e^x.$$

We reject this choice as it gives a reduction in order for the equation satisfied by the zeroth order approximation.

Now we try (a) and put $\delta = \varepsilon$ to get

$$x'' + 2x' = \varepsilon e^x.$$

Zeroth order approximation satisifies

$$x_0'' + 2x_0' = 0, \ x_0(0) = 0$$

General solution is $x_0(s) = A + Be^{-2s}$ and the boundary condition implies B = -A. So we have

$$x_{inner}(s) = A(1 - e^{-2s}).$$

$$\Rightarrow x_{\text{inner}}(t) = A(1 - e^{-2t/\varepsilon}).$$

For matching use the intermediate variable $u=t/\sqrt{\varepsilon}$. So $t=u\sqrt{\varepsilon}$ and

$$x_{\text{outer}} = \ln\left(\frac{2}{u\sqrt{\varepsilon}+1}\right), \quad x_{\text{inner}} = A(1 - e^{-2u/\sqrt{\varepsilon}}).$$

For a match we need

 $\lim_{\varepsilon \downarrow 0} x_{\text{outer}} = \lim_{\varepsilon \downarrow 0} x_{\text{inner}} = \text{ common limit } \Rightarrow \ln 2 = A = \text{ common limit.}$

So the approximation on [0,1] is

$$x_a(t) = x_{\text{outer}} + x_{\text{inner}} - \text{common limit}$$

$$= \ln \frac{2}{t+1} + \ln 2\{1 - e^{-2t/\varepsilon}\} - \ln 2$$

$$= \ln \frac{2}{t+1} - e^{-2t/\varepsilon} \ln 2.$$

(b)

$$\varepsilon \ddot{x} + \dot{x} = 2(1-t), \quad 0 < \varepsilon << 1, \ x(0) = 1, \ x(1) = 1$$

Direct method gives

$$\dot{x}_0 = 2(1-t), \ x_0(0) = 1, \ x_0(1) = 1$$

for the zeroth order approximation.

The solution of the ODE is

$$x_0 = 2t - t^2 + A.$$

Using the boundary condition $x_0(1) = 1$ gives A = 0 and hence $x_0 = 2t - t^2$ which does not satisfy $x_0(0) = 1$.

Assume we have an outer solution

$$x_{\text{outer}}(t) = 2t - t^2$$

and look for an inner solution valid near t=0 by rescaling the independent variable: $s=t/\delta$.

The equation becomes

$$\frac{\varepsilon}{\delta^2}x'' + \frac{1}{\delta}x' = 2 - 2\delta s$$
 dash = $\frac{d}{ds}$

with x(0) = 1 as boundary condition. There are 4 coefficients $\frac{\varepsilon}{\delta^2}$, $\frac{1}{\delta}$, 2, 2δ and hence 6 possible balances are

(a)
$$\frac{\varepsilon}{\delta^2} \sim \frac{1}{\delta} \Rightarrow \delta \sim \varepsilon$$

$$(b) \quad \frac{\varepsilon}{\delta^2} \sim 2 \ \Rightarrow \ \delta \sim \sqrt{\varepsilon}$$

(c)
$$\frac{\varepsilon}{\delta^2} \sim 2\delta \implies \delta \sim \varepsilon^{1/3}$$

(d)
$$\frac{1}{\delta} \sim 2 \implies \delta \sim 1$$

$$(e) \quad \frac{1}{\delta} \sim 2\delta \ \Rightarrow \ \delta \sim 1$$

$$(f) \quad 2 \sim 2\delta \ \Rightarrow \ \delta \sim 1$$

We reject (d), (e) and (f) and try (a), (b) and (c) as possible choices.

Possibility (b): Setting $\delta = \sqrt{\varepsilon}$ gives

$$x'' + \frac{1}{\sqrt{\varepsilon}}x' = 2 - 2\sqrt{\varepsilon}s$$

$$\Rightarrow \sqrt{\varepsilon}x'' + x' = 2\sqrt{\varepsilon} - 2\varepsilon s$$

This gives $x_0' = 0$ which we reject as it gives a reduction in order for the zeroth order approximation. Possibility (c): Setting $\delta = \varepsilon^{1/3}$ gives

$$\varepsilon^{1/2}x'' + \frac{1}{\varepsilon^{1/3}}x' = 2 - 2\varepsilon s$$

$$\Rightarrow \varepsilon^{2/3}x'' + x' = 2\varepsilon^{1/3} - 2\varepsilon^{2/3}s$$

This also gives $x'_0 = 0$ so we reject it too.

Possibility (a): Setting $\delta = \varepsilon$ gives

$$\frac{1}{\varepsilon}x'' + \frac{1}{\varepsilon}x' = 2 - 2\varepsilon s$$

$$\Rightarrow x'' + x' = 2\varepsilon - 2\varepsilon^2 s$$

$$\Rightarrow x_0'' + x_0' = 0 \quad \text{which looks o.k.}$$

General solution is $x_0(s) = A + Be^{-s}$ and the boundary condition $x_0(0) = 1$ implies A + B = 1 i.e. B = 1 - A so

$$x_0(s) = A + (1 - A)e^{-s}$$

 $\Rightarrow x_0(t) = A + (1 - A)e^{-t/eps}$

For matching we use the intermediate variable $u = \sqrt{st} = t/\sqrt{\varepsilon}$ and require that

$$\lim_{\varepsilon \downarrow 0} x_{\text{outer}} = \lim_{\varepsilon \downarrow 0} x_{\text{inner}} = \text{ common limit}$$

$$\Rightarrow \lim_{\varepsilon \downarrow 0} (2u\sqrt{\varepsilon} - \varepsilon u^2) = \lim_{\varepsilon \downarrow 0} (A + (1 - A)e^{-u/\sqrt{\varepsilon}}) \quad \Rightarrow 0 = A.$$

So the common limit is 0 and

$$x_a(t) = x_{\text{outer}} + x_{\text{inner}} - \text{common limit}$$

= $2t - t^2 + e^{-t/\varepsilon}$.

3.

$$\varepsilon \ddot{x} - \dot{x} = 2t, \ x(0) = 1, \ x(1) = 1$$

The direct method yields

$$-\dot{x}_0 = 2t$$
, $x_0(0) = 1$, $x_0(1) = 1$.

Proceeding as in the lectures (i.e. using the boundary condition at t = 1 and assuming a boundary layer at t = 0) gives

$$x_{\text{outer}} = 2 - t^2$$
.

For the inner solution, rescale using $s = t/\delta$. The equation becomes

$$\frac{\varepsilon}{\delta^2}x'' - \frac{1}{\delta}x' = 2\delta s \quad (dash = \frac{d}{ds})$$

with x(0) = 1.

There are 3 possible balances:

$$\begin{array}{ll} (a) & \frac{\varepsilon}{\delta^2} \sim \frac{1}{\delta} \ \Rightarrow \ \delta \sim \varepsilon & \text{possible} \\ \\ (b) & \frac{\varepsilon}{\delta^2} \sim 2\delta \ \Rightarrow \ \delta \sim \varepsilon^{1/3} & \text{possible} \\ \\ (c) & \frac{1}{\delta} \sim 2\delta \ \Rightarrow \ \delta \sim 1 & \text{reject} \end{array}$$

Possibility (b) implies (putting $\delta = \varepsilon^{1/3}$)

$$\varepsilon^{1/3}x'' - \frac{1}{\varepsilon^{1/3}}x' = 2\varepsilon^{1/3}s$$
$$\Rightarrow \varepsilon^{2/3}x'' - x' = 2\varepsilon^{2/3}s$$

 $\Rightarrow -x'_0 = 0$ which is first order (and hence is a reduction in order) so reject (b).

Possibility (a) implies (putting $\delta = \varepsilon$)

$$\frac{1}{\varepsilon}x'' - \frac{1}{\varepsilon}x' = 2\varepsilon s$$

$$\Rightarrow x'' - x' = 2\varepsilon^2 s \Rightarrow x_0'' - x_0' = 0.$$

This is second order, so looks o.k. and has general solution

$$x_0(s) = A + Be^s$$
.

The boundary condition x(0) = 1 implies $A + B = 1 \implies B = 1 - A$, so

$$x_0(s) = A + (1 - A)e^s$$

$$\Rightarrow x_0(t) = A + (1 - A)e^{t/\varepsilon}$$

For matching we use the intermediate variable

$$u = \sqrt{st} = t/\sqrt{\varepsilon}$$

and the condition that

$$\lim_{\varepsilon \downarrow 0} x_{\text{outer}} = \lim_{\varepsilon \downarrow 0} x_{\text{inner}} = \text{common limit}$$

$$\Rightarrow \lim_{\varepsilon \downarrow 0} (2 - \varepsilon u^2) = \lim_{\varepsilon \downarrow 0} (A + (1 - A)e^{\frac{u}{\sqrt{\varepsilon}}}) = \text{ common limit.}$$

This fails as the limit on the left is finite and the one on the right is infinite.

The assumption that the boundary layer is at t=0 is incorrect. If we replace the independent variable by $\tilde{t}=1-t$, this has the effect of swapping the end points so that t=1 becomes $\tilde{t}=0$. The problem becomes

$$\varepsilon \ddot{x} + \dot{x} = 2(1 - \tilde{t}), \quad x(0) = 1, \ x(1) = 1,$$

where \tilde{t} is now the independent variable and dots denote $d/d\tilde{t}$. This is the problem of Ex. 2(b) and was discussed above.

4. a)

$$\varepsilon \ddot{x} + (t+1)\dot{x} + x = 0, \ x(0) = 0, \ x(1) = 1.$$

Comparison with theorem gives p(t) = t + 1 and q(t) = 1 so p and q are entinous on [0,1] with p(t) > 0 for $t \in [0,1]$ as required.

The theorem gives

$$x_{\text{outer}} = \exp\left(\int_{t}^{1} \frac{d\tau}{\tau + 1} d\tau\right) = \exp\left(\left[\ln(\tau + 1)\right]_{t}^{1}\right)$$
$$= \exp\ln\left(\frac{2}{t + 1}\right) = \frac{2}{t + 1}.$$

and $x_{\text{inner}} = A + (0 - A)e^{-t/\varepsilon}$ where

$$A = \exp\left(\int_0^1 \frac{d\tau}{\tau + 1}\right) = 2.$$

So $x_{\text{inner}}(t) = 2 - 2e^{-t/\varepsilon}$.

Zeroth order approximation for $t \in [0, 1]$ is

$$x_a(t) = x_{\text{inner}}(t) + x_{\text{outer}} - A = \frac{2}{t+1} - 2e^{-t/\varepsilon}.$$

b)

$$\varepsilon \ddot{x} + (\cosh t)\dot{x} - x = 0, \ x(0) = 1, \ x(1) = 1.$$

Comparison with theorem gives $p(t) = \cosh t$ and q(t) = -1 so p and q are entinous on [0,1] with p(t) > 0 for $t \in [0,1]$ as required.

The theorem gives

$$x_{\text{outer}} = \exp\left(\int_{t}^{1} -\frac{d\tau}{\cosh \tau}\right) = \exp\left(-\int_{t}^{1} \operatorname{sech} \tau d\tau\right).$$

Since
$$-\int_t^1 \operatorname{sech} \tau d\tau = -[\arctan(\sinh \tau)]_t^1 = \arctan(\sinh t) - \arctan(\sinh 1)$$
 so
$$x_{\text{outer}} = \exp\{\arctan(\sinh t) - \arctan(\sinh 1)\}.$$

Also the theorem gives $x_{\mathrm{inner}} = A + (0 - A)e^{-t/\varepsilon}$ where

$$A = \exp\left(-\int_0^1 \frac{d\tau}{\cosh \tau}\right) = \exp\{-\arctan(\sinh 1)\}.$$

So the zeroth order approximation for $t \in [0,1]$ is

$$\begin{array}{lcl} x_a(t) & = & x_{\mathrm{inner}}(t) + x_{\mathrm{outer}} - A \\ & = & \exp\{\arctan(\sinh t) - \arctan(\sinh 1)\} + (1 - \exp\{-\arctan(\sinh 1)\})e^{-t/\varepsilon} \\ & = & e^{-t/\varepsilon} + e^{-\arctan(\sinh 1)}(e^{\arctan(\sinh t)} - e^{-t/\varepsilon}). \end{array}$$