Methods of Applied Mathematics

Sheet 4 solutions

1. The direct method puts x = zg + ex1 + - - - and substitutes this into the equation to get
e(zo+exy+-- )2 + (o +exr;+--)—2=0

Coefficient of €%: 20 —2=0 = 29 = 2.
Coefficient of e': 23 + 21 =0 = 27 = —23 = —8.
This gives the root near 2 to be 2 — 8¢ up to first order correction.
Now rescale, using T = x/ to get
e837% + 07 —2=0.

Possible balances are

(a) e®*~3 = d~1/\e
and

(b) e®~1 = §re /3

(¢) 6~1 = no scaling and hence reject.

First we try (b) and hence we set 6 = 1/v/3¢ to get

1
P+ —7-2=0 = V3 +7—2V3=0.
\/35

Setting & = T + V/3eZ1 + (v/3£)%Zo = - - - gives the following zeroth order approximation
To=0

we reject this choice as gives an approximate solution this is not of moderate size.

Now we try (a) and put § = 1/4/¢ to get

1 1
%j3+%j_2:0 = .fng—Z\E:O.

Now take T = Zg + /%1 + (1/2)%T2 = - - - to get
(To +vVeT1+ ) + (To + VeT1 + ) — 2/ = 0.

Coefficient (1/2)%: Z3 + Zo =0 = Zo = =i.

Coefficient (v/€)': 3227, + 71 —2=0 =7 = =—1.

_2
3z2+1
So (to first order), z = +i — /. In terms of original variables this gives :tﬁ — 1 for the other two
roots.

Up to order retained, the product of the roots is

(2—85)(—1—#%)(—1—%):(2—85)(1—#%):2—1—?—85—8:2—6—85.

Since the product of the roots of a polynomial equation a,z™ + ap_12" "' + - - 4+ a1z + ap = 0 should
be equal to ag/a, we see that this is true to leading order since ag/a, = 2/e.

2. (a)

et+2t+e" =0, 0<e<<l1, z(0)=0, z(1)=0



Direct method gives
2.1t0 + e’ = 0, SC()(O) = O, 1’0(1) =0

as eIO+5$1+"' _ eajoeaa:1+--- _ ea:o(]_ + .. )
So d
2670k +1=0 = 20700 = —1 = /2e*m0dxo = —/dt
t—A
= 2" 4+t=A = x9=—-In <2)

A = —1 gives z¢(1) = 0 but then z((0) = 0 is not satisfied. Assume that there is a boundary layer at

0 and that we have found 5

nt+1'

Touter(t) =1

Now rescale using s = t/§ as independent variable. The equation becomes

2 d
;—233” + gx’ +e*=0 dash= I
with 2(0) = 0 as boundary condition. Possible balances are
€ 1
(a) 57 ~ g = d~e
€
2 . .
c) <~ ~ no scaling and hence reject.
(¢) 5 1 == 4d6~1 = | d h t

First we try (b) and set § = /¢ to get

2 .
2+ = e

NG
= Vex" + 22" = Jee®.

We reject this choice as it gives a reduction in order for the equation satisfied by the zeroth order
approximation.

Now we try (a) and put § = ¢ to get
2+ 22 = ee”.

Zeroth order approximation satisifies

xy + 21y =0, 20(0) =0

General solution is z¢(s) = A + Be™2® and the boundary condition implies B = —A. So we have
Tipner(s) = A(l — e 2%).
= Tinner(t) = A(L —e2°).

For matching use the intermediate variable u = t/y/e. So t = uy/e and

2 —Zu [
xouter =In <W> s xinner = A(l —e 2 /f)

For a match we need

M Tijpper = COMmMON limit =1n2=A = common limit.

lim z =1
<10 outer <10



So the approximation on [0, 1] is

Za(t) = Touter T Tipner — common limit

2
= I+ In2{1—e 25} —In2

2
= In— —e 2/ n2.
t+1

(b)

ei+2=2(1-1), 0<e<<l1, z(0)=1, z(1)=1

Direct method gives
Zo=2(1—1), zo(0) =1, zo(1) =1
for the zeroth order approximation.
The solution of the ODE is
i) :2t—t2+A.
Using the boundary condition x¢(1) = 1 gives A = 0 and hence ¢ = 2t — t? which does not satisfy
1‘0(0) =1
Assume we have an outer solution
Touter(t) = 2t —

and look for an inner solution valid near ¢ = 0 by rescaling the independent variable: s =t/4.

The equation becomes

1
;—Qx" + gx’ =2-20s dash=
with z(0) = 1 as boundary condition. There are 4 coefficients
balances are

&=

, %, 2, 20 and hence 6 possible

|

5
€ 1

@ =5
9

(© =

= d~e

62~25 = §~el/3

1
d) —=~2 o~1
@ 5~2=

1

(f) 2~26 = 6~1

We reject (d), (e) and (f) and try (a), (b) and (c) as possible choices.
Possibility (b): Setting § = /e gives

1
z’ + %x' =2—2/es
= ez + 1’ =2 — 2es

This gives x{, = 0 which we reject as it gives a reduction in order for the zeroth order approximation.
Possibility (c): Setting 6 = /3 gives

1
1/2, .1 I
e x’ + 51/3$ =2—2¢es

= 23 4ol = 2e1/3 — 2623

This also gives x{, = 0 so we reject it too.



Possibility (a): Setting § = & gives
1, 1, _
- +-x =2-—2¢s
€ €
= 2 +12' =2 — 2%
= xy + x5 =0 which looks o.k.

General solution is zo(s) = A 4+ Be™® and the boundary condition z¢(0) = 1 implies A + B =1 i.e.
B=1-Aso
zo(s) = A+ (1—A)e™®

= zo(t) = A+ (1 — A)e t/ePs
For matching we use the intermediate varaible u = /st = t/,/z and require that

lim zoyter = lim Tipper = common limit
el0 |0

= 11%1(211\/5 —eu?) = liﬁ)l(A +(1—Ae Ve =0=A.
So the common limit is 0 and

r.(t) = ZTouter + Tipper — common limit

= 2 —t24e Ve,

ei—i=2t, £(0)=1, z(1) =1

The direct method yields
—io = Qt, SC()(O) = 17 1‘0(1) =1.

Proceeding as in the lectures (i.e. using the boundary condition at ¢ = 1 and assuming a boundary
layer at t = 0) gives
2
Touter = 2 — 17

For the inner solution, rescale using s = t/§. The equation becomes
1 d
5%:3” - Sm' =20s (dash = £)
with z(0) = 1.

There are 3 possible balances:

(a) 5% N% = 0 ~¢ possible
(b) 5% ~ 20 = §~e'/? possible

(¢) %w% = 6~1 reject

Possibility (b) implies (putting § = £'/3)

1
51/3.%'” _ 2 = 251/38
c1/3

= 23" — g = 92/35

= —x( = 0 which is first order (and hence is a reduction in order) so reject (b).
Possibility (a) implies (putting § = ¢)

1

-z — -2’ = 2es

€ €

=2’ -1 =2 =) —x,=0.



This is second order, so looks o.k. and has general solution
xo(s) = A+ Be’.
The boundary condition 2(0) = 1 implies A+ B=1 = B=1-A4, so
xo(s) = A+ (1 — A)e®

= zo(t) = A+ (1— A)e'/*

For matching we use the intermediate variable

N

and the condition that

lim z; = lim z; = common limit
<10 outer clo  nner

= lim(2 — eu?) = lim(A + (1 — A)e%) = common limit.
el0 el0
This fails as the limit on the left is finite and the one on the right is infinite.

The assumption that the boundary layer is at ¢ = 0 is incorrect. If we replace the independent variable
by t = 1 — t, this has the effect of swapping the end points so that ¢ = 1 becomes ¢t = 0. The problem
becomes

ci+i=21-1), z(0)=1, z(1)=1,

where  is now the independent variable and dots denote d/df. This is the problem of Ex. 2(b) and
was discussed above.

a)
et+(t+1)d+2=0, z(0) =0, z(1) =1.
Comparison with theorem gives p(t) = t 4+ 1 and ¢(¢t) = 1 so p and ¢ are cntinous on [0, 1] with
p(t) > 0 for ¢ € [0, 1] as required.
The theorem gives

1
dr
Touter = €XD (/t p— d7> = exp([ln(r + 1)]%)

1
o (2 9
X n _— = —.
PHTTT) Tt

and @i ep = A+ (0 — A)e™V/¢ where
So x;

1
d
A =exp (/ T ) =2.
0 7'+1
inmer (1) =2 — 275,

Zeroth order approximation for ¢ € [0, 1] is

2

—t
za(t) = Tinper(t) + Touter — A4 = 1 2e "/,

e + (cosht)t —x =0, x(0) =1, z(1) =1.

Comparison with theorem gives p(t) = cosht and ¢(¢t) = —1 so p and ¢ are cntinous on [0, 1] with
p(t) > 0 for t € [0, 1] as required.

The theorem gives
1 dr 1
Zouter = €XP T coshr =exp | — ) sechrdr | .




Since — ftl sechrdr = —[arctan(sinh 7)]} = arctan(sinh¢) — arctan(sinh 1) so
Zouter = exp{arctan(sinh¢) — arctan(sinh 1)}.

Also the theorem gives z;,,0p = A + (0 — A)e™"/¢ where

1
A =exp (—/ dr ) = exp{— arctan(sinh 1)}.
0

cosh 7

So the zeroth order approximation for ¢ € [0,1] is

za(t) = Tipper(t) + Touter — 4

= exp{arctan(sinht) — arctan(sinh 1)} 4 (1 — exp{— arctan(sinh 1)} )e /¢
eft/a +e arctan(sinh 1)(earctan(sinh t) eft/s).



