Methods of Applied Mathematics

Sheet 1 solutions

1. The law is of the form f(v,r,p, g, u, o) =0, where
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Now [v] = LT, [r] = L, [p] = ML™®, [g] = LT 2, [u] = ML7'T~" and [0] = ML™?, so changes

in units of M, L, T, giving rise to changes m = am, | = (I, t = 4t in the corresponding quantities,
induce the changes

v=py"tv, F=0r, p=aBp, g= Py g, p=af v p, 5 =af P
Then
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2. The dimension matrix for the law is

m | t P p
M {1 0 0 1 1
L1010 -1 -3)]=A4
T \0 01 -2 0

Since A is in Echelon form we have that rank A = 3 and hence there are 2 independent solutions
(dimension of the solution space is 2). Clearly [0,3,—1,0,1]7 and [3,0,—-2,6,1]T solve Az = 0 and
since the (5 x 2) matrix

0 3
3 0
B=| -1 -2
0 6
1 1

can be transformed using row operations into one which contains the (2 x 2) identity matrix. The two
solutions yield the dimesnionless quantities

which implies by the Buckingham Pi theorem an equivalent law of the form
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3. The first assumption says that there is a law of the form f(A, ¢, ) = 0 for which the dimension matrix
is

A ¢ ¢
L(2 1 0)=4

Since rank A = 1 the solution space has dimension 2 and a basis is [—%, 1, 0]7, [0, 0, 117 or
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and hence there is an equivalent law of the form
Gi73:9) =0
which may be rewritten as -z = h(¢) or
A=cg(9).
Since A = A; + A, and ¢ is the smallest angle in all of the triangles by similarity we find

Pg(¢) = a®g(¢) + bg(8)
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as required for Pythagarus’s Theorem.



