Methods of Applied Mathematics

Sheet 3. Regular Perturbation

1. Consider the initial-value problem:-

$$\ddot{x} + (1 + \epsilon)x = 0,$$

$$t \in (0, \infty), \quad 0 < \epsilon << 1, \quad x(0) = 1, \quad \dot{x}(0) = 0.$$

(a) Show that if a solution is sought by the direct method of perturbation using $x = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \cdots$ then the first-order correction x_1 contains a secular term. Use the Poincaré method to remove this secular term and hence obtain a solution valid up to terms of first-order in ϵ .

What, to first-order, is the period of the solution?

- (b) Solve the problem exactly, expand your solution in powers of ϵ , and hence check your answer to part (a).
- 2. The equation of motion for a simple pendulum of length a is

$$\frac{d^2\theta}{d\tau^2} + \frac{g}{a}\sin\theta = 0,$$

where θ is the angular displacement from the vertical.

Suppose that the pendulum is released from rest with ϵ as the initial value of θ and that we take $\theta_c = \epsilon$, $\tau_c = \sqrt{a/g}$ as characteristic values for θ and τ to arrive at new, scaled, dimensionless variables

$$\phi = \theta/\theta_c, \quad t = \tau/\tau_c.$$

Show that, in terms of the dimensionless scaled variables, the equation of motion becomes

$$\frac{d^2\phi}{dt^2} + \frac{\sin\epsilon\phi}{\epsilon} = 0,$$

with $d\phi/dt = 0$ and $\phi = 1$ at t = 0 as initial conditions.

Use the direct method of perturbation to develop a solution to this problem up to terms quadratic in ϵ and show that this gives a secular term.

Hint: Recall that

$$\frac{\sin(\varepsilon\phi)}{\varepsilon} = \frac{1}{\varepsilon} \left(\varepsilon\phi - \frac{1}{3!} \varepsilon^3 \phi^3 + \cdots \right)$$

- 3. Rework Ex 2 using the Poincaré method to get rid of the secular term and hence find the second-order approximation to the period of the pendulum.
- 4. By applying the direct method of perturbation to the polynomial equation

$$x^3 - (4 + \epsilon)x + 2\epsilon = 0$$

obtain the three roots of the cubic equation

$$x^3 - 4.001x + 0.002 = 0$$

1

correct to six decimal places.