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Figure 7:

4 Calculus of Variations

4.1 Introduction

The ‘calculus of variations’ deals with extremal problems in which the ‘thing’ being maximized or mini-
mized depends upon a function; the problem is solved by finding which function, from a given set F of
available functions, that gives the extreme value. Usually the ‘thing’ being maximized or minimized is
given as an integral involving the function.

Example 4.1. Let (x1, y1) and (x2, y2) be points in the plane. We seek the curve of shortest length
joining these points (see Figure 9).
We restrict the class of curves by insisting that each curve can be written as a graph y = f(x). Suppose
x1 < x2. Then, we could take for our set F all graphs of functions that have continuous derivatives and
which satisfy yi = f(xi), i = 1, 2, i.e.,

F := {f ∈ C1[x1, x2] : f(x1) = y1 and f(x2) = y2}.

The length of the curve f or any function f ∈ F is

J(f) :=
∫ x2

x1

(1 + (f ′(x))2)1/2dx.

Find f ∈ F such that J(f) is minimized.

Definition 4.1. A functional is a mapping that assigns a real number to each function f in some set F
of functions. (That is, a functional is a mapping J : F → R where F is a set of functions.)

Ordinary Calculus
Suppose we have g : S → R where S ⊂ Rn and wish to find a maximum or a minimum. (g =
g(x1, x2, · · · , xn), x ∈ S.)
If g is differentiable, this leads to a necessary condition in terms of the partial derivatives of g. Indeed,
if x∗ is a maximizer or a minimizer of g then necessarily

∇g(x∗) = 0.

We can also use the concept of directional derivatives.
Recall that the directional derivatives of g at x0 ∈ S in the direction of a unit vector n is given by

Dng(x0) := lim
ε→0

g(x0 + εn)− g(x0)
ε

. (4.1)

Then the necessary condition for g to have an extreme value at x0 is that the directional derivatives (4.1)
should be zero for all directions n. For a sufficient condition more is needed: we need to know whether
the extreme point is a hill, valley or saddle. These are usually reflected in terms of second derivatives.
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Remark 4.1.

• (4.1) also can be written as
d

dε
g(x0 + εn) =: Dng(x0).

• Fix n = ei.
d

dε
g(x0 + εei) =

∂g

∂xi
(x0).

Variational Calculus
For an extremal problem involving a functional J : F → R, we can proceed in an analogous manner by
using an analogue of the directional derivative.

Definition 4.2. Let J : F → R be a functional defined on a set by functions of F . Then the first
variation of J at y0 ∈ F in the direction h is

δJ(y0, h) := lim
ε→0

J(y0 + εh)− J(y0)
ε

. (4.2)

Here ‘h’ is a function such that y0+εh ∈ F for sufficiently small ε. Such a direction h is called admissible.

Before we look at an example we note the following useful theorem.

Lemma 4.1 (Fundamental Lemma of Calculus of Variations).
If f ∈ C[a, b] and ∫ b

a

f(x)h(x)dx = 0 ∀h ∈ C[a, b]

satisfying h(a) = h(b) = 0, then
f(x) = 0 ∀x ∈ [a, b].

Proof. Suppose ∃ x0 ∈ (a, b) for which f(x0) > 0 (without loss of generality; the proof when we assume
f(x0) < 0 is identical). Then ∃ (c, d) ⊂ (a, b) with x0 ∈ (c, d) and f(x) > 0 in (c, d) by continuity of f .
Set h to the special function

h(x) =
{

(x− c)3(d− x)3, x ∈ [c, d],
0, otherwise,

h ∈ C2[a, b], h(a) = h(b) = 0.
Now we have

0 =
∫ b

a

f(x)h(x)dx =
∫ d

c

f(x)h(x)dx = f(x̄)
∫ d

c

h(x)dx > 0.

(Since f(x) > 0 in (c, d) and h(x) > 0 in (c, d), x̄ ∈ (c, d) by integral mean value theorem.)
Thus we have a contradiction and hence the lemma is proved since f(x) = 0, x ∈ (a, b) and f ∈ C[a, b] ⇒
f(a) = f(b) = 0.

Remark 4.2. This result is similar to the lemma which says that:

f ∈ C[a, b] and
∫ d

c

f(x)dx = 0 ∀(c, d) ⊂ [a, b],

⇒ f(x) = 0 ∀x ∈ [a, b].

Remark 4.3. This fundamental lemma is true without imposing boundary conditions on h. The same
argument holds.

Remark 4.4. In forming the variation (4.2) we add functions and multiply by scalars (i.e. we form
y0 + εh). So F should be a subset of a space of functions (i.e. a subset of a (linear) ‘vector’ space) in
which these operations are defined. For f1, f2 and x ∈ [a, b],

(f1 + f2)(x) := f1(x) + f2(x).

39



In Example 4.1 we have the subset of C1[x1, x2] defined f(x1) = y1 and f(x2) = y2.
F = {f ∈ C1[x1, x2] : f(x1) = y1 and f(x2) = y2} is not a linear space.

f1, f2 ∈ F ⇒ f1 + f2 6∈ F.

The admissible functions h that give the first variation must belong to the following subspace of C1[x1, x2]
:-

H := {h ∈ C1[x1, x2] : h(x1) = 0 and h(x2) = 0}

so that y0 ∈ F and h ∈ H ⇒ y0 + εh ∈ F .
In general we would also need a concept of ‘distance’ (or a concept of ‘smallness’); to assert that J has
a local minimum at y0. We need to consider functions which are close to y0. Formally this is carried
out in a ‘normed’ linear space; ‖y‖ gives a measure of ‘smallness’ of y and ‖y − y‖ gives a measure of
‘closeness’ of y to y. The use of norms and the concept of convergence for normed vector spaces involving
‘spaces of functions’ is a hard subject in analysis. We avoid this.
Less formally, we take it as clear that y0 + εh is closed to y0 when ε is closed to 0.

Definition 4.3. An extremum is the extreme value (max or min) of J(y) over F .
An extremal is the function or element of F which achieves the extremum.

4.2 Necessary Conditions for an Extremum

We regard y0 as fixed and then fix an admissible direction h and define

V (ε) := J(y0 + εh).

V is a function of the real variable ε and we note that V (0) = J(y0) and

V ′(0) = lim
ε→0

V (ε)− V (0)
ε

= lim
ε→0

J(y0 + εh)− J(y0)
ε

= δJ(y0, h).

We see in the remark below that a necessary condition for J to have an extremal at y0 must be that for
any admissible direction h, the function V (ε) has an extremum at ε = 0, i.e. from Calculus that V ′(0) = 0.

Remark:
If J has an extremal at y0 then

J(y0) ≤ J(y) ∀ y
⇒ J(y0) ≤ J(y0 + εh) ∀ ε
⇒ V (0) ≤ V (ε) ∀ ε
⇒ 0 is a minimum of V

⇒ V ′(0) = 0.

Theorem 4.1. Let J : F → R be a functional on a set of functions F . If y0 ∈ F gives an extremum of
J (max or min) then

δJ(y0, h) = 0

for all admissible directions.

Remark 4.5. We have ignored the ‘difficulty’ or ‘notion’ that δJ(y0, h) might not be defined. The limiting
process in (4.2) requires some properties on J in order that the limit is defined.

Example 4.2. Minimize

J(y) =
∫ 1

0

{1 + (y′(x))2}dx

for y ∈ C1[0, 1] with y(0) = 0, y(1) = 1.
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Solution:
We need to consider y0(x) + εh(x) ∈ F where y0 ∈ {y ∈ C1[0, 1] : y(0) = 0, y(1) = 1}, so h ∈ {y ∈
C1[0, 1] : y(0) = 0, y(1) = 0}. We require δJ(y0, h) = V ′(0)=0. Since

V (ε) =
∫ 1

0

[1 + {(y0(x) + εh(x))′}2]dx

=
∫ 1

0

{(1 + y′0(x)2) + 2εy′0(x)h′(x) + ε2h′(x)2}dx

=
∫ 1

0

(1 + y′0(x)2)dx+ 2ε
∫ 1

0

y′0(x)h′(x)dx+ ε2
∫ 1

0

h′(x)2dx

and
dV

dε
(ε) = lim

ε→0

V (ε)− V (0)
ε

= 2
∫ 1

0

y′0(x)h′(x)dx+ 2ε
∫ 1

0

h′(x)2dx,

we have

δJ(y0, h) ≡ V ′(0) = 2
∫ 1

0

y′0(x)h′(x)dx.

Thus a necessary condition for y0 to be an extremal is that

δJ(y0, h) = 0,

or ∫ 1

0

y′0(x)h′(x)dx = 0 (4.3)

for all h ∈ C1[0, 1] and h(0) = h(1) = 0.

Equation (4.3) is a ‘variational’ equation. Such equations imply that y0 solves a differential equation.

If y0 ∈ C2[0, 1] then we can integrate (4.3) by parts to obtain

0 = [y′0(x)h(x)]10 −
∫ 1

0

y′′0 (x)h(x)dx.

Since h(0) = h(1) = 0 we have

0 =
∫ 1

0

y′′0 (x)h(x)dx ∀h ∈ C1[0, 1] with h(0) = h(1) = 0.

Using the Fundamental theorem of calculus gives

0 = y′′0 (x) ∀x ∈ (0, 1).

Since y0 ∈ F we have y0(0) = 0 and y0(1) = 1

⇒ y0(x) = x.

Remark 4.6. In Example 4.2 we had y0, h ∈ C1[0, 1] initially but to complete the problem we integrated
by parts and introduced y′′0 , for which we need y0 ∈ C2[0, 1].
For simplicity from now on we will impose this ‘regularity’ on F from the beginning. That is we will look
for solutions of the extremal problem in a set F which is contained in C2[a, b] for some interval [a, b].
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4.3 ‘Simple Problems’ :- Euler Equations

Our main result is for functionals of the kind

J(y) :=
∫ b

a

L(x, y, y′)dx

and F = {y ∈ C2[a, b] : y(a) = α, y(b) = β}. The integral L(x, y, y′) is called a Lagrangian.

Theorem 4.2. If a function y is an extremal of J(y) for y ∈ F (defined as above) then y satisfies

Ly(x, y, y′)− d

dx
Ly′(x, y, y′) = 0, (4.4)

for x ∈ (a, b). Here

Ly :=
∂L

∂y
and Ly′ :=

∂L

∂y′
,

where we regard L as a function of three variables labelled x, y and y′.

Note that (4.4) is an ordinary differential equation involving the functions y(x) and dy(x)/dx.

Proof. As in Example 4.2, we consider

V (ε) :=
∫ b

a

L(x, y + εh, y′ + εh′)dx

= J(y + εh).

Here h is chosen so that y+ εh ∈ F , i.e., h ∈ C2[a, b] and h(a) = h(b) = 0, in other words h is admissible.
A necessary condition for y to be an extremal is that 0 = δJ(y, h) = V ′(0).
Since by the chain rule we have

V ′(ε) =
∫ b

a

d

dε
L(x, y + εh, y′ + εh′)dx

=
∫ b

a

{
∂L

∂y
(x, y + εh, y′ + εh′)h(x) +

∂L

∂y′
(x, y + εh, y′ + εh′)h′(x)

}
dx

it follows that

V ′(0) = 0 ⇒ lim
ε→0

∫ b

a

{
∂L

∂y
(x, y + εh, y′ + εh′)h(x) +

∂L

∂y′
(x, y + εh, y′ + εh′)h′(x)

}
dx = 0

⇒
∫ b

a

{Ly(x, y, y′)h+ Ly′(x, y, y′)h′}dx = 0. (4.5)

Performing integration by parts gives

0 =
∫ b

a

Ly(x, y, y′)hdx−
∫ b

a

d

dx
(Ly′(x, y, y′))hdx− [Ly′(x, y, y′)h]ba.

Since h is admissible we have h(a) = h(b) = 0 and hence∫ b

a

{
Ly(x, y, y′)− d

dx
(Ly′(x, y, y′))

}
h(x)dx = 0

for all admissible h.
By Fundamental Lemma of Calculus of Variations we conclude that

Ly(x, y, y′)− d

dx
Ly′(x, y, y′) = 0, ∀x ∈ [a, b].
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Equation (4.4) is known as the Euler equation (or Euler-Lagrange equation) for the Lagrangian L(x, y, y′).

Example 4.3. Find an extremal for

J(y) =
∫ 1

0

(y′2 + 3y + 2x)dx

with y satisfying y(0) = 0, y(1) = 1.

Solution:
The Lagrangian is L(x, y, y′) = y′

2 + 3y + 2x which gives

Ly =
∂L

∂y
= 3, Ly′ =

∂L

∂y′
= 2y′.

Hence the Euler equation is

Ly −
d

dx
Ly′ = 0.

⇒ 3− d

dx
(2y′) = 0, i.e., 3− 2y′′ = 0.

⇒ y′′ =
3
2
⇒ y(x) =

3
4
x2 +

1
4
x.

Thus the function y(x) = (3x2 + x)/4 is an extremal for J(y) with the boundary condition y(0) = 0,
y(1) = 1.

Example 4.4 (Example 4.1 continued). This is the shortest curve problem:
Find an extremal for

J(y) =
∫ x2

x1

√
1 + y′(x)2dx.

Solution:
The Lagrangian is

L(x, y, y′) = (1 + y′
2)1/2.

Since Ly = 0 and Ly′ = y′(1 + y′
2)−1/2, the Euler equation is

0− d

dx

(
y′√

1 + y′2

)
= 0

⇒ y′(x)√
1 + y′(x)2

= A

⇒ y′(x)2 = A2(1 + y′(x)2)
⇒ y′(x) = B

⇒ y(x) = Bx+ C.

Boundary conditions y(x1) = y1, y(x2) = y2.
Hence, the shortest curve written as a graph y = f(x) connecting two points (x1, y1) and (x2, y2) in the
plane is the straight line connecting them (as we would hopefully expect).
Clearly this is a minimizer rather than a maximizer.

4.4 Special Lagrangians

1) y′ absent from L, i.e., L = L(x, y).
∂L

∂y′
≡ 0.

⇒ Euler equation is Ly(x, y) = 0.
This is not a differential equation.
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2) y absent from L, i.e., L = L(x, y′).

⇒ ∂L

∂y
≡ 0.

Euler equation is −dLy′/dx = 0.
⇒ Ly′ = constant.

3) x absent from L, i.e., L = (y, y′).
In this case we obtain the first integral

L− y′Ly′ = constant.

Proof. In general consider

d

dx
(L− y′Ly′) =

d

dx
L(x, y(x), y′(x))− d

dx
(y′Ly′)

= (Lx + y′Ly + y′′Ly′)−
(
y′′Ly′ + y′

d

dx
Ly′

)
= Lx + y′

(
Ly −

d

dx
Ly′

)
= Lx + 0y′ using Euler equation.

Now if Lx ≡ 0, we obtain the desired result that

d

dx
(L− y′Ly′) = 0, or L− y′Ly′ = constant.

Example 4.5 (Brachistochrone Problem).
A bead slides down a smooth wire (no friction) in the (x, y) plane (which is vertical) under gravity.
Suppose the wire connects (x1, y1) to (x2, y2) where x1 < x2 and y1 > y2 and suppose the shape of the
wire is a graph y = y(x). In the bead is released from rest, which shape of wire gives the smallest time of
descent?

Solution:
The curve which solves this problem is called the brachistochrone. The particle’s mechanics are best
written down using conservation of energy:

Kinetic Energy + Potential Energy = Constant

at any moment in time (and location of bead on wire), the speed is v so KE = mv2/2.
The potential energy is mgy. At time t = 0, v = 0 (the bead is at rest)

⇒ 1
2
mv2 +mgy = 0 +mgy.

Hence the problem does not depend on mass of the bead. We have the speed is given by

v2 = 2g(y1 − y)⇒ v =
√

2g(y1 − y).

Recall that arc length is

ds =
√

1 + y′2dx.

Note that ds/dt = v, hence the time for descent is t =
∫ t
0
dt =

∫ s2
s1

ds
dt dt =

∫ s2
s1
ds/v = time (s1 = 0, s2 is

the length of the curve).

Time =
∫ x2

x1

√
1 + y′2√

2g(y1 − y)
dx.
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The functional is ∫ x2

x1

√
1 + y′2

2g(y1 − y)
dx, y = y(x).

This is a problem in the calculus of variations. We look for a critical point of this functional. The
Lagrangian is :-

L(y, y′) =

√
1 + y′2

2g(y1 − y)
. (4.6)

Since x is absent from the Lagrangian, we use the remark given earlier to observe that a critical point
satisfies:

L− y′Ly′ = constant.

⇒

√
1 + y′2

2g(y1 − y)
− y′ 2y

′(1 + y′
2)−1/2/2√

2g(y1 − y)
= C

⇒

√
1 + y′2

y1 − y
− y′

2(1 + y′
2)−1/2

√
y1 − y

= A where A =
√

2gC

⇒ 1 = A
√
y1 − y

√
1 + y′2.

We want a differential equation, i.e. solve for y′.

1
A2(y1 − y)

= 1 + y′
2
,

B =
1
A2

, y′
2 =

B

y1 − y
− 1,

dy

dx
= −

(
B

y1 − y
− 1
)1/2

= −
(
B − (y1 − y)

y1 − y

)1/2

,

observing that we want the slope of the graph to be negative.
This is a first order equation of the standard type dy/dx = f(y), and hence it can be solved by using
separation of variables: ∫

dy

f(y)
=
∫
dx ⇒

∫
dx = −

∫ √
y1 − y√

B − (y1 − y)
dy.

In this case try the substitution
y1 − y = B sin2 θ (4.7)

⇒ dy

dθ
= −B sin θ cos θ

Integral becomes

x =
∫

sin θ
cos θ

dy

dθ
dθ

=
∫

sin θ
cos θ

(−B sin θ cos θ) dθ

= −B
∫

sin2 θdθ

= B

∫
(cos 2θ − 1)dθ

=
B

2
(sin 2θ − 2θ) + C.

(4.8)

Instead of solving for y in terms of x (which is horrible), (4.7) and (4.8) give a parametric representation
of the curve.

θ = 0 ⇒ y = y1 by (4.7),
x1 = C by (4.8).
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The parametric equations are {
x = x1 + B

2 (sin 2θ − 2θ),
y = y1 −B sin2 θ,

}
CYCLOID.

B is defined by y(x2) = y2, i.e.
y2 = y1 −B sin2 θ̄,
x2 = x1 + B

2 (sin 2θ̄ − 2θ̄)

are solved for B and θ̄

4.5 Free End Point Problems

We now look at problems where the value of y is not prescribed at an end point. Indeed it is left free to
vary.

Theorem 4.3 (Necessary Condition). If a function y gives an extreme value of the functional

J(y) =
∫ b

a

L(x, y, y′)dx

for y ∈ F = {y ∈ C2[a, b] : y(a) = α}, then y satisfies the Euler equation

Ly(x, y, y′)− d

dx
Ly′(x, y, y′) = 0

and the boundary condition
Ly′(b, y(b), y′(b)) = 0

holds at x = b.

Proof. As for the case in which both end points are specified we consider

V ′(0) = 0

where

V (ε) =
∫ b

a

L(x, y + εh, y′ + εh′)dx

with h ∈ C2[a, b] and h(a) = 0.
As in the earlier calculation in the proof of Theorem 4.2 we have (4.5), i.e.∫ b

a

{Ly(x, y, y′)h(x) + Ly′(x, y, y′)h′(x)} dx = 0

and integrating by parts yields∫ b

a

{
Ly(x, y, y′)− d

dx
Ly′(x, y, y′)

}
h(x)dx+ [Ly′(x, y, y′)h(x)]ba = 0. (4.9)

We know that h(a) = 0 for h to be admissible.

1) Since an h with h(b) = 0 is admissible we have∫ b

a

[
Ly −

d

dx
Ly′

]
dx = 0,

⇒ Ly −
d

dx
Ly′ = 0, (the Euler equation),

for x ∈ [a, b].
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2) We now have
[Ly′(x, y, y′)h(x)]ba = 0

for any admissible h.
Since h(a) = 0 we have

Ly′(b, y(b), y′(b))h(b) = 0 for all h(b)

⇒ Ly′(b, y(b), y′(b)) = 0.

Example 4.6 (Boat crossing river). The river has banks at x = 0 and x = b. Consider a boat crossing
the river of width b whose sides are straight and parallel. Suppose v(x) is the velocity of water at position
x. Suppose that the speed of the boat relative to still water is c where c > v(x) ∀x ∈ [0, b]. Starting from
a fixed position on one bank what is the minimum time to reach the other bank? Here the point on the
other bank is not specified.

Solution:
Assuming that the boat is capable of extremely rapid acceleration in order to maintain a constant given
speed c relative to the water, then for a path y(x) the time taken is

J(y) =
∫ b

0

{
c2(1 + y′

2)− v2
}1/2

− vy′

c2 − v2
dx,

unless the water velocity is a constant the Euler equation is difficult to solve. We content ourselves here
to find the boundary condition at x = b. By the theory for free end point problem we have

Ly′(b, y(b), y′(b)) = 0

where

L(x, y, y′) =

{
c2(1 + y′

2)− v2
}1/2

− vy′

c2 − v2
,

Ly′ =
1
2

{
c2(1 + y′

2)− v2
}−1/2

(2c2y′)− v

c2 − v2
.

⇒ c2y′(b)

{c2(1 + y′(b))− v2(b)}1/2
= v(b).

After simplifying we obtain

y′(b) =
v(b)
c
.

We learn from this boundary condition in the context of this problem, that the angle of approach to the
bank is given by the ratio of the water to speed of boat.

Example 4.7. Find possible extremals of

J(y) =
∫ 1

1/27

(9x2(y′)2 + 6y′ − 2y2)dx y

(
1
27

)
= 0, y(1) free

Solution: Since L(x, y, y′) = 9x2(y′)2 + 6y′ − 2y2 we have

Ly = −4y, Ly′ = 18x2y′ + 6 and
d

dx
Ly′ = 36xy′ + 18x2y′′.

The Euler-Lagrange equation is

Ly −
d

dx
Ly′ = 0
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⇒ − 4y − 36xy′ − 18x2y′′ = 0

Looking for a solution of the form y = xr, ⇒ y′ = rxr−1, y′′ = r(r − 1)xr−2 yields

18r(r − 1) + 36r + 4 = 0 ⇒ 18r2 + 18r + 4 = 0 ⇒ (3r + 1)(6r + 4) = 0

⇒ r = −1
3

and r = −2
3
.

Hence
y = Ax−1/3 +Bx−2/3.

Using the boundary condition y(1/27) = 0 yields 3A+ 9B = 0 and hence

y = B(x−2/3 − 3x−1/3) ⇒ y′ = B

(
−2

3
x−5/3 + x−4/3

)
.

The free end point condition is
Ly′(1, y(1), y′(1)) = 0

i.e.

18y′(1) + 6 = 0 ⇒ 18B
(
−2

3
+ 1
)

+ 6 = 0 ⇒ B = −1.

Thus
y = (3x−1/3 − x−2/3).

4.6 Higher Dimensional Problems

Suppose we have J(y1, y2, · · · , yn) where each yi ∈ C2[a, b], we can think of

y(x) = (y1(x), y2(x), · · · , yn(x)), x ∈ [a, b]

as giving a curve in Rn using x ∈ [a, b] as a parameter. If we specify

y1(a) = α1, · · · , yn(a) = αn, (y(a) = α),
y1(b) = β1, · · · , yn(b) = βn, (y(b) = β),

then we have a fixed end point problem: the ends of the curve are fixed at α and β ∈ Rn.
Using vector notation we consider fixed point problems given by

J(y) =
∫ b

a

L(x, y, y′)dx

with y(a) = α and y(b) = β.

Theorem 4.4 (Necessary condition). If a vector function y is an extremal of

J(y) =
∫ b

a

L(x, y, y′)dx

for y with yi ∈ C2[a, b] and y(a) = α and y(b) = β, then y1, y2, · · · , yn satisfy the system of Euler equation

Lyi
(x, y, y′)− d

dx
Ly′

i
(x, y, y′) = 0,

i = 1, 2, · · · , n.

Proof. As for scalar case consider V ′(0) where

V (ε) =
∫ b

a

L(x, y + εh, y′ + εh′)dx
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where h = (h1, · · · , hn) with hi ∈ C2[a, b] and hi(a) = hi(b) = 0, i = 1, 2, · · · , n. Performing the
differentiation with respect to ε, setting ε = 0 and integrating by parts gives

V ′(0) =
∫ b

a

n∑
i=1

(
Lyi −

d

dx
Ly′

i

)
hi(x)dx

for all admissible h.
V ′(0) = 0 seems to be one equation.∫ b

a

n∑
i=1

fi(x)hi(x)dx = 0, ∀ admissible h.

Choosing h = hi(x)ei, where ei is the unit coordinate vector, gives∫ b

a

(
Lyi −

d

dx
Ly′

i

)
hi(x)dx = 0, ∀hi(x),

⇒ Lyi
− d

dx
Ly′

i
= 0.

Example 4.8. Find possible extremals of

J(y, x) =
∫ π/4

0

(4y2 + z2 + y′z′)dx

satisfying
y(0) = 0, z(0) = 0,
y(π/4) = 1, z(π/4) = 1.

Solution:
Here L = 4y2 + z2 + y′z′ and the Euler equations are

Ly − d
dxLy′ = 0,

Lz − d
dxLz′ = 0.

Since we have Ly = 8y, Ly′ = z′, Lz = 2z and Lz′ = y′ we have

8y − d2z

dx2
= 0, 8y = z′′,

2z − d2y

dx2
= 0, 2z = y′′.

Eliminating z ⇒ 16y = y′′′′.
This is a constant coefficient fourth order ODE, so we look for a solution of the form y = emx where m
satisfies m4 − 16 = 0

⇒ (m2 − 4)(m2 + 4) = 0

⇒ (m− 2)(m+ 2)(m+ 2i)(m− 2i) = 0.

Hence we have
y(x) = A cosh 2x+B sinh 2x+ C cos 2x+D sin 2x

⇒ z(x) =
1
2
y′′ = 2A cosh 2x+ 2B sinh 2x− 2C cos 2x− 2D sin 2x.

Using y(0) = 0 and z(0) = 0 gives

A+ C = 0 and 2(A− C) = 0

⇒ A = C = 0

Using y(π/4) = 1 and z(π/4) = 1 gives

B sinh(π/2) +D = 1 and 2B sinh(π/2)− 2D = 1

⇒ B = 3/4 cosech(π/2) and D = 1/4.
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4.7 Problems with Higher Order Derivatives

For

J(y) =
∫ b

a

L(x, y, y′, y′′)dx

with
y(a) = α, y(b) = β,
y′(a) = γ, y′(b) = δ,

(α, β, γ, δ are all given), the following theorem gives a necessary condition for an extremal.

Theorem 4.5 (Necessary condition). If y gives an extremal value of

J(y) =
∫ b

a

L(x, y, y′, y′′)dx

for y ∈ C4[a, b] with y(a) = α, y(b) = β, y′(a) = γ, y′(b) = δ all specified, then y satisfies the Euler
equation

Ly −
d

dx
Ly′ +

d2

dx2
Ly′′ = 0. (4.10)

Example 4.9. Find possible extremals of

J(y) =
∫ 1

0

(yy′ + (y′′)2)dx y(0) = 0, y′(0) = 1, y(1) = 2, y′(1) = 4.

Solution: Since L(y) = yy′ + (y′′)2, the Euler-Lagrange equation is

Ly −
d

dx
Ly′ +

d2

dx2
Ly′′ = 0

and we have

y′ − d

dx
y +

d2

dx2
(2y′′) = 0 ⇒ 2y′′′′ = 0.

Hence
y = Ax3 +Bx2 + Cx+D

and
y′ = 3Ax2 + 2Bx+ C.

Using the boundary data y(0) = 0, y′(0) = 1, y(1) = 2, y′(1) = 4 yields

D = 0, C = 1, 2 = A+B + C, 4 = 3A+ 2B + C ⇒ B = 0 and A = 1

Thus
y = x3 + x.

Remark 4.7.

1) Note that the Euler equation (4.10) is a 4th order equation, hence the requirement that y ∈ C4[a, b].
Its solution needs 4 boundary conditions which for fixed end point problems are the given conditions
y(a) = α, y(b) = β, y′(a) = γ, y′(b) = δ. Naturally one could also consider free end point problems
in which fewer than 4 conditions on y and y′ at a and b are specified. In that case, we would also have
extra boundary conditions from consideration of the Lagrangian.

2) The result generalizes to L(x, y, y′, y′′, · · · , y(n)) where the Euler equation can be shown to be

Ly −
d

dx
Ly′ +

d2

dx2
Ly′′ − · · ·+ (−1)n

dn

dxn
Ly(n) ,

which has order 2n. Typically one requires the following 2n boundary conditions to define the class of
admissible functions y :-

y(j)(a); y(j)(b) j = 0, 1, · · · , n− 1

to be specified.
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A

B

Length of the rope (L) is fixed

Figure 8: Maximise area subject to length of the boundary being fixed.

3) Problems involving y′′ are natural in elastically theory for example the elastic energy of a ‘beam’ is
given by

J(y) =
∫ b

a

{
1
2
E(y′′)2 − f(y)

}
dx

where y(x) is the displacement of the beam in the vertical direction and f is the load on the beam.

4.8 Isoperimetric Problems

An isoperimetric problem is a constrained extremal problem such as finding the shape of the region which
has maximum area amongst all regions with the same perimeter.

‘Isoperimetric’ = having the same perimeter.

For example, what shape of region defined by the rope (i.e. a curve) of fixed length L maximizes the area
enclosed by the rope (the curve)? In this particular case (Figure 8) one side of the region is part of a
given straight line. The basic theorem that can be used for such problems is an analogue of the following
theorem in n−dimensional calculus.

Theorem 4.6. Suppose f, g : S → R are C1(S) where S ⊂ Rn. The equation

g(x) = C, (4.11)

(C a given constant) constrains x to a subset of S. (Indeed (4.11) is the equation of a hyper surface.) If
x0 ∈ S and satisfies (4.11) and it is an extremum of f subject to the constraint (4.11), then provided x0

does not give an extreme value of g (i.e. ∇g(x0) 6= 0) there exists a constant multiplier λ such that

∂f

∂xi
(x0) = λ

∂g

∂xi
(x0), (i = 1, 2, · · · , n). (4.12)

This theorem is the basis of the method of Lagrange multipliers for finding extreme values subject to
constraints. Note that (4.12) can be written as

∇f(x0) = λ∇g(x0).

We could extend this to a constraint.

We consider analogues in the calculus of variations where we seek to find an extremal y ∈ C2[a, b]
of

J(y) =
∫ b

a

F (x, y, y′)dx
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where y is subject to the constraint

K(y) =
∫ b

a

G(x, y, y′)dx = C

(C given constant) and subject to fixed end point condition.

Now commonly used for general constrained problems is the calculus of variations (side conditions are
expressed as integrals).

Theorem 4.7 (Necessary condition). If y ∈ C2[a, b] gives an extreme value of

J(y) =
∫ b

a

F (x, y, y′)dx, (4.13)

where y is subject to the integral constraint

K(y) =
∫ b

a

G(x, y, y′)dx = C (4.14)

(C given constant) and satisfies fixed end point conditions, then provided y is not an extremal of K, there
exists a constant multiplier λ such that y satisfies

Fy −
d

dx
Fy′ = λ

(
Gy −

d

dx
Gy′

)
.

Remark of proof

1) Proof uses Lagrange multiplier theorem in R2.

2) If we start as usual and vary y in the direction h we would consider

V (ε) =
∫ b

a

F (x, y + εh, y′ + εh′)dx

and impose fixed end point conditions h(a) = h(b) = C. However such a variation would give

K(y + εh) =
∫ b

a

G(x, y + εh, y′ + εh′)dx

which in general is not equal to C. To get around this we use a 2-parameter family of variations

y + ε1h1 + ε2h2.

Proof. The set of admissible directions is

H̃ = {h ∈ C2[a, b] : h(a) = h(b) = 0}.

Suppose y is a constrained extremal of J(y) subject to the constraint K(y) = C. Set

V (ε1, ε2) = J(y + ε1h1 + ε2h2)

and
W (ε1, ε2) = K(y + ε1h1 + ε2h2)

where h1, h2 ∈ H̃.
By hypothesis, y is not an extremal of K(y) so there are values of ε1, ε2 (near to zero) such that

K(ε1, ε2) = C, (4.15)
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0

(x1,y1)

(x2,y2)

Figure 9: The hanging chain problem.

i.e. W (ε1, ε2) = C satisfies the constraint (4.14). Furthermore, V (ε1, ε2) has an extremum at ε1 = ε2 = 0.
So Lagrange multiplier theorem in R2 gives a constant multiplier λ such that

∂

∂ε
(V − λW )(0, 0) = 0. (4.16)

Writing H = F − λG, then

V (ε1, ε2)− λW (ε1, ε2) = J(y + ε1h1 + ε2h2)− λK(y + ε1h1 + ε2h2)

=
∫ b

a

F (x, y + ε1h1 + ε2h2, y
′ + ε1h

′
1 + ε2h

′
2)dx− λ

∫ b

a

G(x, y + ε1h1 + ε2h2, y
′ + ε1h

′
1 + ε2h

′
2)dx

=
∫ b

a

[F (x, y + ε1h1 + ε2h2, y
′ + ε1h

′
1 + ε2h

′
2)− λG(x, y + ε1h1 + ε2h2, y

′ + ε1h
′
1 + ε2h

′
2)]dx

=
∫ b

a

H(x, y + ε1h1 + ε2h2, y
′ + ε1h

′
1 + ε2h

′
2)

we then calculate ∂(V (ε1, ε2) − λW (ε1, ε2)/∂ε and set the derivative equal to zero when ε1 = ε2 = 0.
This yields an integral similar to the unconstrained case.∫ b

a

{Hy(x, y, y′)hi +Hy′(x, y, y′)h′i}dx = 0.

⇒ using the unconstrained argument,

⇒ Hy −
d

dx
Hy′ = 0,

as required.

Example 4.10 (Hanging Chain). A classical isoperimetric problem is that of finding the shape of a
hanging chain (under gravity) of fixed length and fixed to 2 points. The chain hangs in the plane of the
two points.The chain will hang so that the energy is minimized. Suppose that the shape of the chain is
described by the graph of y(x) with y ∈ C2[x1, x2].
Density ρ fixed constant. The potential energy of the chain is

ρE =
∫ β

0

ρgyds

=
∫ x2

x1

(ρg)y
√

1 + y′2dx
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: gravitational energy.
Constraint is

K(y) =
∫ x2

x1

√
1 + y′2dx = length,

K(y) = B.

min J(y) =
∫ x2

x1

y

√
1 + y′2dx,

subject to K(y) = B.

It follows that
F (y, y′) = y

√
1 + (y′)2

and
F (y, y′) =

√
1 + (y′)2.

Hence

H(y, y′) = F (y, y′)− λG(y, y′) = (y − λ
√

1 + (y′)2).

Since x is absent from H, the Euler equation

Hy(y, y′)− d

dx
Hy′(y, y′) = 0

implies that

H(y, y′)− y′Hy′(y, y′) = A,

where A is a constant. It follows that

(y − λ)
√

1 + (y′)2 − y′(y − λ)
y′√

1 + (y′)2
= A

(y − λ)[(1 + (y′)2)− (y′)2] = A
√

1 + (y′)2

(y − λ) = A
√

1 + (y′)2

(y − λ)2 = A2[1 + (y′)2]

y′ = ±
√

(y − λ)2 −A2

A

1√
(y − λ)2 −A2

dy

dx
= ± 1

A∫
1√

(y − λ)2 −A2
dy = ± x

A
+B

arccosh(
y − λ
A

) = ± x
A

+B

y = λ+Acosh(± x
A

) +B.

The three constants λ, A and B are determined by the endpoints (x1, y1) and (x2, y2) of the chain and
the length L of the chain.

54


