
3 Singular perturbation theory

3.1 Big ‘O’ and Twiddles

In connection with approximations and their validity, it is useful to have notation that allows us to
compare functions as some limit is approached.

Definition 3.1. We say that f(x) = O(g(x)) as x→ x0 if there exists η > 0 and an M > 0 such that

|x− x0| < η ⇒ |f(x)| ≤M |g(x)|.

That is, there exists a neighbourhood of x0 and a positive constant M such that for all x in the neigh-
bourhood, we have

|f(x)| ≤M |g(x)|.

Definition above deals with a finite x0. For infinite x0, we have

Definition 3.2. We say that f(x) = O(g(x)) as x→∞ if there exists X > 0 and an M > 0 such that

x > X ⇒ |f(x)| ≤M |g(x)|.

Remark 3.1. We note that f(x) = O(1) as x → x0, means that x0 has a neighbourhood in which f(x)
is bounded.

Example 3.1. We have cosx− 1 = O(x2) as x→ 0.

Solution:
A truncation of Maclaurin’s series gives

f(x) = f(0) + xf ′(0) +
x2

2
f ′′(ηx), 0 < ηx < x,

where ηx depends on x.
Setting

f(x) = cosx ⇒ f(0) = 1, f ′(0) = 0 and f ′′(ηx) = − cos ηx.

Hence,

cosx− 1 = −x
2 cos ηx

2
⇒ | cosx− 1| ≤ x2

2
| cos ηx| ≤

x2

2
⇒ cosx− 1 = O(x2) ∀ x ∈ R.

Definition 3.3. We say that f(x) ∼ g(x) as x→ x0 (f(x) ‘twiddles’ g(x)) provided

f(x)
g(x)

→ K, as x→ x0,

where K 6= 0 and K 6=∞.

f(x) ∼ g(x) is equivalent to f(x) = O(g(x)) and g(x) = O(f(x)) as x → x0. We can use this definition
for x0 =∞.
We shall use ‘twiddles’ in comparing objects like f(ε) and g(ε) as ε→ 0.

3.2 An algebraic example using singular perturbation theory.

Example 3.2. Find the roots of
εx2 + 2x+ 1 = 0, (3.1)

where 0 < ε� 1, by a perturbation method.
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Solution:
We assume x = x0 + εx1 + ε2x2 + · · · , and substitute

ε(x0 + εx1 + ε2x2 + · · · )2 + 2(x0 + εx1 + ε2x2 + · · · ) + 1 = 0.

Equating coefficients of powers of εk on left and right gives

2x0 + 1 = 0, (3.2)

x2
0 + 2x1 = 0, (3.3)

2x0x1 + 2x2 = 0. (3.4)

Solving (3.2)-(3.4) gives

x0 = −1
2
, x1 = −1

8
and x2 = − 1

16
.

So we generate

x = −1
2
− 1

8
ε− 1

16
ε2 − · · · ,

which is the power series expansion in εk for the root closest to −1/2.
The method fails to give a formula for the second root which we know (because the product of the roots
is 1/ε).
The problem is singular because setting ε = 0 (equivalent to looking at zero order approximation) gives
2x+ 1 = 0 which has a lower degree than the original equation. (Analogous to differential equation being
of lower order.)
What is wrong?
Our method assures that the equation is correctly scaled and therefore that εx2 is small when ε is small.
This is true for the root close to “−1/2” but not true for the root close to −2/ε where εx2 ∼ 4/ε. In
effect we have a ‘multi scale’ problem and to deal correctly with the other root we must rescale x.
Example 3.2 (Continued)
Rescale x by putting x = x/δ where δ is to be determined in terms of ε. Equation becomes

ε(δx̄)2 + 2(δx̄) + 1 = 0,

εδ2x̄2 + 2δx̄+ 1 = 0.

We require this to be ‘correctly’ scaled so that x is of ‘moderate’ size when close to the unknown 2nd
root. Possible candidates for δ are obtained by a process known as balancing the coefficients.
There are 3 possible balances.

a) 1st and 2nd terms of same order
εδ2 ∼ 2δ ⇔ δ ∼ ε−1.

b) 1st and 3rd terms of same order
εδ2 ∼ 1 ⇔ δ ∼ ε−1/2.

c) 2nd and 3rd terms of same order
2δ ∼ 1 ⇔ δ ∼ 1.

We choose one of these in order to find the second root.
c) Setting δ = 1 does not rescale x so we reject this choice.
b) Setting δ = ε−1/2 gives

x̄2 + 2ε−1/2x̄+ 1 = 0,

⇒ ε1/2x̄2 + 2x̄+ ε1/2 = 0.

We take
x̄ = x̄0 + ε1/2x̄1 + εx̄2 + · · · .
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and to obtain the zeroth order approximation we set ε = 0 to obtain

2x̄0 = 0 ⇒ x̄0 = 0.

⇒ x̄ = ε1/2x̄1 + · · · .

We rejected this because x̄ is not of moderate size.
a) Setting δ = ε−1 gives

x̄2 + 2x̄+ ε = 0. (3.5)

Takng
x̄ = x̄0 + εx̄1 + ε2x̄2 + · · ·

yields
(x̄0 + εx̄1 + ε2x̄2 + · · · )2 + 2(x̄0 + εx̄1 + ε2x̄2 + · · · ) + ε = 0

and equating coefficients of εk gives

(ε0) x̄2 + 2x̄0 = 0, (3.6)

(ε1) 2x̄0x̄1 + 2x̄1 + 1 = 0, (3.7)

(ε2) 2x̄0x̄2 + x̄2
1 + 2x̄2 = 0, (3.8)

etc . . . .
From (3.6) we have that x̄0 = 0 or x̄0 = −2.
Taking x̄0 = −2, we get x̄1 = 1/2 and x̄2 = 1/8.

⇒ x̄ = −2 +
1
2
ε+

1
8
ε2 + · · · .

Hence rewriting In terms of the original variable, x = δx̄ = x̄/ε we have

x = −2
ε

+
1
2

+
1
8
ε+ · · · ,

which is the missing large root.
Actually (although we are entitled to discard x̄0 = 0 because this would lead to x̄ = O(ε) which is not of
moderate size as we require x̄ ∼ 1) working with x̄0 = 0 gives

x = −1
2
− ε

8
+ · · · .

3.3 An BVP example using singular perturbation theory

For BVPs, singular perturbation problems arise when the direct method results in a succession of BVPs
that cannot be satisfied, typically because the DE for the zeroth order approximation involves an order
less than that of the DE in the original problem. The consequence is that we have more BCs than are
needed for the DE of lesser order which in general cannot be simultaneously satisfied.
This is what happens in the following example.

Example 3.3. Use singular perturbation theory to find an approximate solution to the BVP

εẍ+ 2ẋ+ x = 0, t ∈ (0, 1),
x(0) = 0, x(1) = 1, 0 < ε� 1. (3.9)

Solution:
Apply the direct method: set

x = x0 + εx1 + ε2x2 + · · ·

in (3.9) to obtain

ε(ẍ0 + εẍ1 + ε2ẍ2 + · · · ) + 2(ẋ0 + εẋ1 + ε2ẋ2 + · · · ) + (x0 + εx1 + ε2x2 + · · · ) = 0
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with

x0(0) + εx1(0) + ε2x2(0) + · · · = 0,

x0(1) + εx1(1) + ε2x2(1) + · · · = 1.

Equating coefficients of ε0 gives :

2ẋ0 + x0 = 0, t ∈ (0, 1), x0(0) = 0, x0(1) = 1.

Solving 2ẋ0 + x0 = 0 gives x0 = Ae−t/2 and to find A we use one of the two boundary conditions.
We see that imposing x0(1) = 1 gives A = e1/2 ⇒ x0(t) = e(1−t)/2, while imposing x0(0) = 0 gives
A = 0 ⇒ x0(t) = 0.
We choose to use the right hand boundary condition x0(0) = 1 and hence we have

x0(t) = e(1−t)/2.

Equating coefficients of ε1 and using ẍ0 = 1/4e(1−t)/2 gives :

ẍ0 + 2ẋ1 + x1 = 0, t ∈ (0, 1), x1(0) = 0, x1(1) = 0

⇒ 2ẋ1 + x1 = −1
4
e(1−t)/2, t ∈ (0, 1), x1(0) = 0, x1(1) = 0.

Again the ODE is first order and we obtain different solutions depending on which boundary condition
we use. Using the right hand boundary condition x1(0) = 0 we obtain a solution x1(t).
If we carry on in this way, ignoring the left hand boundary condition x(0) = 0, we can build up a
solution that satisfies the differential equation and the boundary condition x(1) = 1 but not the boundary
condition x(0) = 0.
On the other hand we could always use the boundary condition x(0) = 0 and ignore x(1) = 1.

A solution that satisfies the differential equation and the condition x(1) = 1 is called an outer solution
as x = 1 can be thought of as the outer boundary of the domain (0, 1). Its zeroth order approximation is

xouter(t) = e(1−t)/2

and we assume it is valid (in some sense) for t near 1. We are missing an inner solution which is valid
for t near 0.
Let us assume that the difficulty is due to incorrect scaling for t near 0 (i.e., we have a multi-scale
problem) and rescale by using s = t/δ as an independent variable, where δ is to be determined in terms
of ε.
Let

x̂(s) = x(t) ⇒ dx

dt
=
dx̂

ds

ds

dt
=

1
δ

dx̂

ds
,

Rewriting the ODE in (3.9) in terms of x̂(s) gives

ε

δ2
d2x̂

ds2
+

2
δ

dx̂

ds
+ x̂ = 0

and by convention we drop the ‘ˆ’ (abusing notation as we frequently do) to give

ε

δ2
x′′ +

2
δ
x′ + x = 0, x(0) = 0, (3.10)

where ′ denotes differential with respect to s.
There are three terms and three coefficients. We wish to choose δ so that we have correct scaling near
t = 0 (or s = 0). We determine δ by balancing. That is, choose δ so that two of the coefficients of the
ODE are of the same order (the ‘dominant’ balance) and the third one is small in comparison (and there-
fore missing from the zeroth order approximation) and hope for a solution that is valid near t = 0 (s = 0).

Possibilities
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a) 2nd and 3rd terms same order

⇒ 2/δ ∼ 1 ⇒ δ ∼ 1 ⇒ original scaling and so reject.

b) 1st and 3rd terms same order
⇒ ε

δ2
∼ 1 ⇒ δ ∼

√
ε.

Taking δ =
√
ε in (3.10) gives

x′′ +
2√
ε
x′ + x = 0

⇒
√
εx′′ + 2x′ +

√
εx = 0,

To obtain the zeroth order approximation we set ε = 0 to obtain the zeroth order approximation

2x′0 = 0 (Reduction of order)

⇒ x0 = C

Applying the boundary condition x(0) = 0 gives x0 = 0 and hence we obtain x0 = 0 which is no good
as x = x0 +

√
εx1 + · · · =

√
εx1 + · · · is not of moderate size so we reject this scaling.

c) 1st and 2nd terms same order

⇒ ε

δ2
∼ 2
δ
⇒ δ ∼ ε.

Taking δ = ε in (3.10) gives
x′′ + 2x′ + εx = 0.

This looks promising as it is still a 2nd order ODE. Setting ε = 0 gives us that the zeroth order
approximation x0 satisfies

x′′0 + 2x′0 = 0 ⇒ x0 = Ae0 +Be−2s (as roots of auxiliary equation are− 2, 0).

Applying the boundary condition at s = 0 ⇒ A = −B gives an approximate inner solution

x0(s) = A(1− e−2s) or x0(t) = A(1− e−2t/ε).

So now we have an approximation outer solution (valid near t = 1)

xouter(t) = exp
(

1− t
2

)
and approximation inner solution (valid near t = 0)

xinner(t) = A

(
1− exp

(
−2t
ε

))
.

The final job to do is to choose A so that these solutions ‘match’ and hence obtain a composite solution
valid everywhere in (0, 1).

3.4 Matching

In the above example, we have an inner solution and an outer solution, each being valid for t in different
parts of the interval. Roughly,

xinner is valid where t ∼ ε and xouter is valid in the remaining interval.

The idea of matching is to adjust the constant A in the inner solution so that in the overlap region the
inner solution matches the outer solution (in a way to be explained).
We obtain the overlap (or intermediate) region by using an intermediate scale u which is the geometric
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mean of t and s. This scale lies between the original scale t of the outer approximation and the scale
s = t/ε of the inner approximation and is given by u =

√
st. The condition for matching is then

lim
ε↘0

xouter

(√
εu
)

= lim
ε↘0

xinner

(√
εu
)

:= CL (3.11)

where CL denotes the common limit. The solutions must agree with each other in the limit ε↘ 0 when
written in terms of the intermediate scale u.
In our example we found that s = t/ε is the right scaling for the inner solution. It follows that in this
case u = (t2ε)1/2 or u = t/

√
ε and the overlap region is then where u = O(1) and t = O (

√
ε). Making

xinner and xouter agree in the overlap region means keeping u fixed as ε↘ 0.
The matching condition (3.11) fixes A. We then define an approximate solution xa(t) by

xa(t) = xouter(t) + xinner(t)− CL.

The common limit is subtracted because in the intermediate (overlap) region xouter and xinner are equally
valid and each is close to the common limit.
Example 3.3 (Continued)
We have

xouter(t) = exp
(

1− t
2

)
and xinner(t) = A

(
1− exp

(
−2t
ε

))
,

and sonce

u =
√
st =

√
t2

ε
=

t√
ε

is the intermediate variable we have

xouter

(√
εu
)

= e
1−
√

εu
2 and xinner

(√
εu
)

= A
(

1− e−
2u√

ε

)
.

For matching, we require

lim
ε↘0

e
1−
√

εu
2 = lim

ε↘0
A
(

1− e−
2u√

ε

)
= CL

⇒ e1/2 = A = CL.

So the composite approximation is

xa(t) = e(1−t)/2 + e1/2
(

1− e−2t/ε
)
− e1/2

= e1/2
(
e−t/2 − e−2t/ε

)
.

Note that in the outer region e−2t/ε is small and so in this region

xa(t) ∼ e1/2−t/2 = the outer solution.

In the inner region, t� 1 ⇒ e−t/2 ∼ 1 and so

xa(t) ∼ e1/2
(

1− e−2t/ε
)

= the inner solution.

Remark 3.2.

1) The region where the inner solution is valid contributes to the boundary layer (a term taken from fluid
mechanics). We say that the boundary layer has width ε. It is convenient to have this occur at t = 0,
which can always be achieved by a shift of the origin of the original independent variable.

2) The main concern in Singular Perturbation theory is to match an inner solution with an outer solution
to obtain an approximation valid over the whole interval. In our examples we do not go beyond zeroth
order approximations for either solutions. It is possible to define techniques that include higher order
corrections.

33



3) The method does not always work, but will for a certain class of problems involving 2nd order linear
homogeneous ODEs. See the following theorem.

Theorem 3.1. (A Theorem on the Method of Singular Perturbations) Given a linear boundary-
value problem of the form

εẍ(t) + p(t)ẋ(t) + q(t)x(t) = 0, t ∈ (0, 1), 0 < ε� 1,
x(0) = a, x(1) = b,

(3.12)

where p, q are continuous on [0, 1] with p(t) > 0 for t ∈ [0, 1], there exists a boundary layer at t = 0 with
outer and inner approximations:

xouter(t) = b exp
(∫ 1

t

q(τ)
p(τ)

dτ

)
, xinner(t) = A+ (a−A) exp

(
−p(0)t

ε

)
,

where

A = b exp
(∫ 1

0

q(τ)
p(τ)

dτ

)
.

Proof. The direct method of perturbation leads to

p(t)ẋ0(t) + q(t)x0(t) = 0

for the zeroth-order approximation. Solve this by separating the variables:

ẋ0(t)
x0(t)

= −q(t)
p(t)

,

and then integrating from t to 1:

[lnx0(t)]1t = −
∫ 1

t

q(τ)
p(τ)

dτ, ⇒ ln
x0(1)
x0(t)

= −
∫ 1

t

q(τ)
p(τ)

dτ,

which gives

x0(t) = x0(1) exp
(∫ 1

t

q(τ)
p(τ)

dτ

)
.

For the outer solution, the approximate boundary condition is x0(1) = b, so we get

xouter(t) = b exp
(∫ 1

t

q(τ)
p(τ)

dτ

)
.

For the inner solution, rescale using s = t/ε. The equation becomes (on multiplying through by ε2)

x′′ + p(εs)x′ + εq(εs)x = 0,

where the prime denotes differentiation with respect s.
The zeroth-order approximation (got by setting ε = 0) is

x′′0 + p(0)x′0 = 0,

with general solution x0(s) = A+Be−p(0)s.
For the inner solution, the appropriate boundary condition is x0(0) = a, which gives a = A + B. So
B = a−A and the inner solution is

xinner(t) = A+ (a−A)e−p(0)t/ε.

All that remains to be done is to show that the constant A is as claimed in the theorem. We do this by
using the intermediate variable u = t/

√
ε and applying the matching condition:

lim
ε↘0

{
b exp

(∫ 1

ε
√
u

q(τ)
p(τ)

dτ

)}
= lim
ε↘0

{
A+ (a−A) exp

(
−p(0)u√

ε

)}
, (3.13)

which gives

A = b exp
(∫ 1

0

q(τ)
p(τ)

dτ

)
,

as claimed.
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Remark 3.3.

1) The approximation on [0, 1] from considering the inner and outer solutions is then

xa(t) = xinner(t) + xouter(t)−A,

where

A = b exp
(∫ 1

0

q(τ)
p(τ)

dτ

)
.

2) Matching is only possible because p(0) > 0. However if p(t) < 0, t ∈ [0, 1] then there exists a boundary
layer at t = 1 and again we can match (see Exercise sheet 4, question 3).

We now show two different examples.

Example 3.4. Use singular perturbation theory and matching to find an approximate solution to the
BVP

εẍ+ ẋ = 2t, t ∈ (0, 1), 0 < ε� 1,
x(0) = 1, x(1) = 1.

}
(3.14)

Solution:
Direct method leads to zeroth order approximation:

ẋ0 = 2t ⇒ x0(t) = t2 +A.

Impose x0(1) = 1 ⇒ A = 0 and hence x0(t) = t2.
Assume that there exists a boundary layer at t = 0 and rescale near t = 0.
Using s = t/δ to get

ε

δ2
x′′ +

1
δ
x′ = 2δs, (3.15)

where dashes denote differentiating with respect to s.
Balancing two of the terms in the equation:

a)
ε

δ2
∼ 1
δ
⇒ δ ∼ ε (possible).

b)
1
δ
∼ 2δ ⇒ δ ∼ 1 (no change and hence reject).

c)
ε

δ2
∼ 2δ ⇒ δ ∼ ε1/3 (possible).

First we try c). Setting δ = ε1/3 in (3.15) gives

ε2/3x′′ + x′ = 2ε2/3s.

Setting ε = 0 gives the zeroth order approximation:

x′0 = 0

since this is a first order equation and the original ODE is second order we reject this choice of δ.
Now we try a). Taking δ = ε in (3.15) gives

x′′ + x′ = 2ε2s.

Setting ε = 0 gives the zeroth order approximation

x′′0 + x′0 = 0 ⇒ x0(s) = A+Be−s.
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Imposing the boundary condition x0(0) = 1 ⇒ A = 1−B,

⇒ x0(s) = 1−B(1− e−s)

i.e., we have
xinner(t) = x0(s) = x0(t/ε) = 1−B(1− e−t/ε).

We recall that the outer solution is
xouter(t) = t2.

For matching we use an intermediate scale u =
√
ts = t/

√
ε.

The overlap region is t = O(
√
εu) where u = O(1) and we want the outer and inner solutions to ‘match’

in this overlap region, so we require

lim
ε↘0

xouter(
√
εu) = lim

ε↘0
xinner(

√
εu) := CL

⇒ lim
ε↘0

(
√
εu)2 = lim

ε↘0

(
1−B

(
1− e−u/

√
ε
))

= CL

⇒ 0 = 1−B = CL

i.e., B = 1 is the matching condition and CL = 0.
Hence our zeroth order approximation is

xa(t) = xouter(t) + xinner(t)− CL
= t2 + (1− (1− e−t/ε))− 0

= t2 + e−t/ε.

Example 3.5. Use singular perturbation theory and matching to find an approximate solution to the
BVP

εẍ+ tẋ− tx = 0, 0 < ε� 1, t ∈ (0, 1),
x(0) = 0, x(1) = e.

}
(3.16)

Solution:
Direct method ⇒ zeroth order equation is

tẋ0 − tx0 = 0 ⇒ ẋ0 − x0 = 0

⇒ x0(t) = Aet.

Applying the right hand (outer) boundary condition x0(1) = e gives A = 1 and hence we have an outer
solution

xouter(t) = et.

To find an inner solution we rescale with
s =

t

δ

and (3.16) becomes
ε

δ2
x′′ +

δs

δ
x′ − sδx = 0. (3.17)

Possible balances are :-

a)
ε

δ2
∼ 1 ⇒ δ =

√
ε.

Taking δ =
√
ε in (3.17) gives x′′ + sx′ − s

√
εx = 0, which looks OK since it is second order.

b)
ε

δ2
∼ δ ⇒ δ ∼ ε1/3.

Taking δ = ε1/3 in (3.17) gives ε1/3x′′ + sx′ − sε1/3x = 0.
Setting ε = 0 gives a first order equation, so we reject this choice of δ.
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c) δ ∼ 1, ⇒ δ = 1 which gives no change and so we reject this choice of δ.

Hence we use a).
Setting ε = 0 gives the zeroth order approximation

x′′0 + sx′0 = 0.

Setting u = x′0 gives

u′ + su = 0 ⇒
∫
du

u
= −

∫
sds

⇒ lnu = −s
2

2
+ C

⇒ u = x′0 = Ae−s
2/2

⇒ x0(s) = x0(0) +
∫ s

0

Ae−τ
2/2dτ.

Applying the inner boundary condition x0(0) = 0 gives

xinner(t) = A

∫ t/
√
ε

0

e−τ
2/2dτ.

To match with the outer solution we require ‘matching’ in the overlap region determined by the interme-
diate scale

u =
√
ts =

t

ε1/4
.

Hence the overlap region is t = O(ε1/4u), u = O(1). The matching condition is then

lim
ε↘0

xinner(ε1/4u) = lim
ε↘0

xouter(ε1/4u) := CL

i.e., the matching condition is

lim
ε↘0

A

∫ u

ε1/4

0

e−τ
2/2dτ = lim

ε↘0
eε

1/4u = CL

⇒ A

∫ ∞
0

e−τ
2
2dτ = 1 = CL

⇒ A

√
π

2
= 1 = CL

and hence

A =

√
2
π

and CL = 1

⇒ xa(t) =

√
2
π

∫ t/
√
ε

0

e−τ
2/2dτ + et − 1.

(The point of this example is that the definition of the overlap region is different to previous example.)
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