
2 Regular perturbation theory

2.1 The Direct Method

Suppose we have a differential equation with initial and/or boundary conditions in which all the variables
have been correctly scaled to be dimensionless and there is one other dimensionless coefficient ε that gives
the order of magnitude of any term in which it appears. A common situation in applications is one in
which ε is small (but not zero) and represents a perturbation from a simple problem (hopefully with a
known solution) given by setting ε = 0.
A perturbation method is a method of solution that, starting from the known solution of the unperturbed
problem (ε = 0), generates in a systematic way an approximate solution to the perturbed problem (which
in general we cannot solve exactly).

Example 1.15 (revisited)
It could be that we can’t solve (1.31), however we can find an approximate solution by exploiting the
fact that we can solve the ε = 0 problem and consider ε to be small.

1) Assume that the solution can be written as a power series in ε, i.e.,

u(t) = u(t, ε) = u0(t) + εu1(t) + ε2u2(t) + · · · .

2) Substitute this power series into the problem satisfied by u to obtain

(u̇0+εu̇1+ε2u̇2+· · · ) = −(u0+εu1+ε2u2+· · · )+ε(u0+εu1+ε2u2+· · · )(u0+εu1+ε2u2+· · · ), (2.1)

with initial condition
u0(0) + εu1(0) + ε2u2(0) + · · · = 1.

Here we use u̇ = du/dt for simplicity of notation. The LHS of (2.1) is a power series of the form

∞∑
k=0

fk(t)εk

and the RHS is a power series of the form

∞∑
k=0

gk(t)εk

and hence

LHS− RHS =
∞∑

k=0

εk(fk(t)− gk(t)) = 0,

is true for all t and ε.

3) Equate coefficients of εk to obtain a series of differential equations with initial conditions

(ε0) u̇0 = −u0, u0(0) = 1, (2.2)

(ε1) u̇1 = −u1 + u2
0, u1(0) = 0, (2.3)

(ε2) u̇2 = −u2 + 2u0u1, u2(0) = 0, (2.4)

etc . . .

4) Solve these initial value problems to obtain u0, u1, u2, . . .. In this case let us solve for terms up to ε2.
From (2.2) we have

u0(t) = e−t
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and using this in (2.3) gives

u̇1 + u1 = e−2t, u1(0) = 0,

⇒ d

dt
(etu1) = et(u̇1 + u1) = e−t,

⇒ etu1 = −e−t +A.

Since u1(0) = 0 we have A = −1 and hence

u1(t) = e−t − e−2t.

Using this and u0(t) = e−t in (2.4) gives

u̇2 + u2 = 2e−2t − 2e−3t, u2(0) = 0,

⇒ d

dt
(etu2) = et(u̇2 + u2) = 2e−t − 2e−2t,

⇒ etu2 = −2e−t + e−2t +A.

From our initial data u2(0) = 0 we have A = 1 and hence

u2(t) = e−t − 2e−2t + e−3t.

5) Choose an approximation by discarding the terms of O(εk) and smaller. In case we take k = 3 to
obtain

uapprox(t) = u0(t) + εu1(t) + ε2u2(t)

= e−t + ε(e−t − e−2t) + ε2(e−t − 2e−2t + e−3t).
(2.5)

Remark 2.1.

1) True solution of (1.31) can be found by noting that (1.31) is a separable first order differential equation,(
1

−u+ εu2

)
du

dt
= 1,

Using partial fractions gives (
− 1
u

+
ε

εu− 1

)
du

dt
= 1

⇒ − lnu+ ln(εu− 1) = t+ C

⇒ ln
(
εu− 1
u

)
= t+ C

⇒ εu− 1
u

= Aet where A = eC .

Applying u(0) = 1 yields A = ε− 1

⇒ u(ε+ (1− ε)et) = 1

⇒ u(t) =
1

ε(1− et) + et
.

Writing u(t) in terms of e−t so that we can compare it with our approximate solution yields

u(t) =
e−t

1 + ε(e−t − 1)
.

We note that it is unusual to be able to find a formula for the exact solution of a nonlinear differential
equation.
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Now let us expand our exact solution in powers of ε, recalling that (1 + x)−1 = 1− x+ x2 − x3 + · · ·
yields

u(t) = e−t(1 + ε(e−t − 1))−1

= e−t(1− ε(e−t − 1) + ε2(e−t − 1)2 − ε3(e−t − 1)3 + · · · )
= e−t + ε(e−t − e−2t) + ε2(e−t − 2e−2t + e−3t) + ε3 · · ·
= uapprox(t) + ε3 · · · .

(2.6)

Hence our perturbation method yields the correct approximation up to the ε3 term.

2) Note that

u1(t) = e−t − e−2t,

u2(t) = e−t − 2e−2t + e−3t

are order 1 terms for all t and hence do not grow in time. Hence our approximation uapprox(t) is valid
for all time. The size of the terms are given by the size of εk.
Application of this direct method might not yield this in other examples. In particular one frequently
sees the appearance of so called secular terms. See next section.

Terminology
The BVP obtained by equating coefficients of ε0 (i.e. set ε = 0) is the unperturbed problem. Its
solution is called the zeroth-order solution. The BVP obtained by equating coefficients of ε1 gives the
first order correction and u0 + εu is the first order approximation.
In general, the BVP obtained by equating coefficients of εk gives the kth order correction uk and
u0 + εu1 + ε2u2 + · · ·+ εkuk is called the kth order approximation.

Recipe for Direct Method

1) Assume that there is a solution in powers of ε.

2) Feed assumed form of solution into BVP (i.e. the differential equation, the initial conditions and the
boundary conditions).

3) Equate coefficients of powers of ε which yields a succession of BVPs.

4) Solve as many of these BVPs as is thought necessary for the accuracy required (say up to coefficient
of εk).

5) Approximate solution is then obtained by discarding the terms not found (i.e. those involving the
term εk+1 and higher).

2.2 Poincaré Method for Periodic Solutions

Problems can arise with the direct method if the problem has a periodic solution.
In general, the zeroth order approximation is a solution with a certain period τ0 (usually 2π as a result
of the adopted time scale), but this is NOT the period of the exact solution.
This discrepancy is manifested by the appearance of secular terms in the correction. An example shows
this

Example 2.1. Suppose an object of mass m is displaced a distance y from its equilibrium position so
that the force on it, due to a nonlinear spring, is ky + ay3. The equation of motion is

m
d2y

dτ2
= −ky − ay3 where a small. (2.7)

Let the object be release from rest so that

y(0) = A,
dy

dτ
(0) = 0. (2.8)
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Clearly A is an appropriate length scale. Since the unperturbed problem has a = 0 and its solution is

y(τ) = A cos

√
k

m
τ (simple Harmonic motion).

It is oscillatory motion with period 2π
√
m/k and so we take our characteristic time scale τc to be τc =√

m/k.
⇒ x =

y

A
, t =

τ√
m/k

.

Rewriting (2.7) and (2.8) in terms of x and t gives

⇒ ẍ+ x+ εx3 = 0,
x(0) = 1, ẋ(0) = 0.

(2.9)

Here ε = aA2/k is a small dimensionless coefficient and (2.9) is called Duffing’s equation. Apply the
direct perturbation method to Duffing’s equation to find an approximate solution.

Solution:
Substituting

x(t)(= x(t, ε)) = x0(t) + εx1(t) + ε2x2(t) + · · ·

into the differential equation and the initial conditions (2.8) we obtain

(ẍ0 + εẍ1 + εẍ2 + · · · ) + (x0 + εx1 + εx2 + · · · ) + ε(x0 + εx1 + ε2x2 + · · · )3 = 0,

and

x0(0) + εx1(0) + εx2(0) + · · · = 1,
ẋ0(0) + εẋ1(0) + εẋ2(0) + · · · = 0.

These equations are true for all ε > 0 and the ODE is true ∀t > 0.
We equate coefficients of powers of εk on the left and right hand sides of each equation. This procedure
yields a succession of differential equation problems for x0, x1, x2, etc. In this case we obtain

ẍ0 + x0 = 0, x0(0) = 1, ẋ0(0) = 0, (2.10)

ẍ1 + x1 + x3
0 = 0, x1(0) = 0, ẋ1(0) = 0, (2.11)

etc.
We now solve these equations in turn. The solution to (2.10) is x0(t) = cos t

⇒ ẍ1 + x1 = − cos3 t, x1(0) = 0, ẋ1(0) = 0.

(This is an inhomogeneous constant coefficient 2nd order equation.)

x1(t) = xc + xp(
xc : general solution of homogeneous equation
xp : any particular solution

)
= A cos t+B sin t+ xp(t).

Noting that

cos 3t = cos(2t+ t)
= cos 2t cos t− sin 2t sin t

= (cos2 t− sin2 t) cos t− 2 sin t cos t sin t

= (cos2 t− (1− cos2 t)) cos t− 2 cos t(1− cos2 t)

= 4 cos3 t− 3 cos t Chebyshev polynomial
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we have
ẍ1 + x1 = −3

4
cos t− 1

4
cos 3t,

xp(t) = C cos 3t+ t(D cos t+ E sin t).
(2.12)

Plugging xp into the equation for x1 i.e.

ẍp + xp = −3
4

cos t− 1
4

cos 3t,

we discover that C,D and E need to satisfy certain algebraic equations. In particular

C =
1
32
, D = 0, E = −3

8
.

Hence the solution of (2.12) is

x1(t) = A cos t+B sin t+
1
32

cos 3t− 3
8
t sin t.

To find A and B we apply initial condition.

⇒ A = − 1
32
, B = 0.

⇒ x1(t) =
1
32

(cos 3t− cos t)− 3t
8
t sin t. (2.13)

Neglecting terms of ε2 and higher powers we have

xapprox(t) = x0(t) + εx1(t)

= cos t+ ε

[
1
32

(cos 3t− cos t)
]
− ε3

8
t sin t.

We observe that |(cos 3t − cos t)/32| ≤ 1/16, but the only bound we can put on the remaining term is
|3t sin t/8| ≤ 3t/8.
The term ‘3t sin t/8’ is an example of a ‘secular term’. It grows in time.
Thus x0(t) is not a good zero order approximation because the first order correction grows in time. This
first order correction εx1(t) is not uniformly bounded in terms of ε for all t. We could limit the size of t
but this is not useful for looking at oscillatory solutions.
An alternative approach (due to Poincaré) is to scale the independent variable using the (unknown) exact
period to get rid of secular term.

Example 2.2 (Poincaré Method). Same problem as in Example 2.1, initially scaled in the same way to
get

ẍ+ x+ εx3 = 0, t > 0,
x(0) = 1, ẋ(0) = 0.

}
(2.14)

Use Poincaré’s Method to find an approximate solution to (2.14).

Solution:
Introduce a new term scale by setting

s = wt

as the independent variable and put

w = 1 + εw1 + ε2w2 + · · · (2.15)

so that the original time scale can be thought of as a zeroth order approximation to the new time scale.
The method of Poincaré is to choose the wk so that each stage of the perturbation procedure any secular
term is removed.
We rewrite the equation for x(s) and let a dash denote differentiating with respect to s:

w2x′′ + x+ εx3 = 0, s > 0,
x(0) = 1, x′(0) = 0. (2.16)
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We now look for

x(s) = x0(s) + εx1(s) + ε2x2(s) + · · · ,
and w = 1 + εw1 + ε2w2 + · · · .

Plugging these into (2.16) we obtain

(1 + εw1 + ε2w2 + · · · )2(x′′0 + εx′′1 + ε2x′′2 + · · · ) + (x0 + εx1 + ε2x2 + · · · )
+ ε(x0 + εx1 + ε2x2 + · · · )3 = 0,

with

x(0) = x0(0) + εx1(0) + ε2x2(0) + · · · = 1,

x′(0) = x′0(0) + εx′1(0) + ε2x′2(0) + · · · = 0.

Equating coefficients of εk yield a succession of BVPs

x′′0 + x0 = 0, x0(0) = 1, x′0(0) = 0, (2.17)

x′′1 + 2w1x
′′
0 + x1 + x3

0 = 0, x1(0) = 0, x′1(0) = 0. (2.18)

As before (2.17) is solved by
x0(s) = cos s.

To find the first order correction x1 we need to solve the following :-

x′′1 + x1 = − cos3 s+ 2w1 cos s,
x1(0) = 0, x′1(0) = 0

Since
cos 3s = 4 cos3 s− 3 cos s

we have

x′′1 + x1 =
(

2w1 −
3
4

)
cos s− 1

4
cos 3s.

The RHS contains a term ‘cos’ which is a solution of the homogeneous equation. This will lead to a
secular term. We use the freedom which arises from the use of w = 1 + εw1 + ε2w2 + · · · in order to
eliminate secular terms, i.e., choose w1, w2, etc in an appropriate way to eliminate the secular terms.
In this case, choosing w1 such that 2w1 − 3/4 = 0 means that the ‘bad’ term is absent and hence we set
w1 = 3/8 to obtain

x′′1 + x1 = −1
4

cos 3s, x1(0) = x′1(0) = 0,

⇒ x1(s) =
1
32

(cos 3s− cos s).

Hence, our first order approximation is

xapprox(s) = cos s+
ε

32
(cos 3s− cos s),

and we note that the first order correction is uniformly small.
We can now return to the original variables.

xapprox(w̄t) = cos w̄t+
ε

32
(cos 3w̄t− cos w̄t),

with
w̄ = 1 +

3
8
ε.

Again we see that the first order correction is uniformly small.
We could continue to obtain a second order correction which is uniformly small not containing a secular
term by choosing w2 approximately.
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2.3 Validity of Approximations

Let ya(t, ε) be an approximation of an exact solution y(t, ε). The normal requirement for validity is that
ya(t, ε) should be uniformly asymptotically valid for t in some interval I in the following sense.

Definition 2.1 (Uniformly asymptotically valid approximations). A function ya(t, ε) is a uniformly
asymptotically valid approximation to a function y(t, ε) on an interval I as ε→ 0, if the error

E(t, ε) = y(t, ε)− ya(t, ε)

converges to zero as ε→ 0 uniformly for t ∈ I.

What this means is
sup
t∈I
|E(t, ε)| → 0 as ε→ 0,

i.e., given η > 0 (however small) there exists ε0 > 0 such that ∀t ∈ I,

|ε| < ε0 ⇒ |E(t, ε)| < η.

While this is alright in theory, but is not very useful in practice, as usually y(t, ε) is not known, so no
expression for E(t, ε) is available.
One frequently develops theories for bounding |E(t, ε)| rigorously but this is hard and complicated from
an analytical point of view.
However it highlights some difficulties with using approximation methods. Note that the difficulties
associated with secular terms are to do with uniformity. We either limit the size of the interval I or use
a different approach (e.g. Poincaré).
Something that can be determined is the so called residual error. Suppose that (for discussion purposes)
our BVP involves a first order differential equation F (t, y(t), ẏ(t), ε) = 0 if ya(t, ε) is an approximate
solution then the residual error is

r(t, ε) = F (r, ya(t, ε), ẏa(t, ε), ε).

Since we have ya we can calculate (in principle) the residual.
We say that ya(t, ε) satisfies the differential equation approximately and uniformly for t ∈ I provided
the residual r(t, ε) converges uniformly to zero as ε→ 0 for t ∈ I.

Question: If ya(t, ε) satisfies the equation approximately and uniformly, then is ya(t, ε) a uniformly
asymptotically valid approximation?
Answer: Not necessarily. Depends on F , i.e., it depends on the differential equation. This is a difficult
question in nonlinear analysis.

Aside: Consider the system of equation Ax = b where the matrix A is given by

A =
(

1 1− δ
1 + δ 1

)
If an approximate solution x̄ solves Ax̄ = b+ r then setting e = x̄− x gives

0 = Ax− b,
r = Ax̄− b. ⇒ Ae = r

In this example A is ‘nearly’ singular since

detA = δ2, δ � 1.

It is not the case that r small implies e is small, since

e = A−1r ⇒ 1
δ2

[
1 −1 + δ

−(1 + δ) 1

]
r
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as for δ = 10−5 and

r = 10−2

[
1
1

]
we have

e = 103

[
1
1

]
.

This is an example of ill conditioning.
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