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1 Dimensional analysis and scaling

1.1 Physical quantities and their measurement

By a physical quantity we mean anything that can be measured by some strictly defined measuring
process.

Example 1.1.
e Temperature by means of a thermometer.
o Time by means of a clock.

A physical quantity may be variable or constant. For example a function of time such as the temperature
of a cooling cup of hot tea or a universal constant such as the speed of light. To measure a physical
quantity, we need a unit of measurement. This allows us to attach a real number to the quantity and
results in a magnitude relative to the unit employed.

Example 1.2.
o 13 feet (length of rod).
o 14.5 degrees Centigrade (air temperature).
o 200.37 Km/hr (speed of a car).
. 33% revolutions per minute (angular velocity of a turntable).

If the system of units is changed then magnitudes also change. If

new unit = % x old unit (A > 0), then, new magnitude = A X old magnitude.

Example 1.3. If the old unit is the foot and the new unit is the centimetre then since 1 centimetre is
approzimately 3—10 feet then A = 30.

Note that we are assuming that 0 in one unit is 0 in another, unlike when one changes from degrees
centigrade to degrees Fahrenheit.

1.1.1 Dimensions and units

Roughly speaking the dimensions of a physical quantity correspond to how it is defined or how it is
measured. Any physical theory regards certain dimensions as fundamental and others as derived.

Example 1.4. Speed has dimensions length/time. Here length and time are regarded as fundamental,
whereas the dimension of speed is derived.

Notation

e We use uppercase letters to denote fundamental dimensions.
e.g. M for mass, L for length, T for time, © for temperature.

e To indicate the dimensions of a physical quantity we enclose it in square brackets.

e.g. [speed], [g], [mv?].

e Dimensional equations are used to relate and manipulate the dimensions of physical quantities.

Some examples of useful physical physical quantities:

velocity]=[length/time]=LT !

acceleration]=[velocity /time]=LT~2

[
[
- [angular velocity]=[angle/time]=T""!
[frequency]=T""1

[

momentum]=[mass x velocity|=M LT 1



force]=[momentum /time|=M LT 2

density]=[mass/volume]=M L3

energy]=[forcex distance]=M L?>T 3

pressure]=|[force/area]=M L~ 1T~2
heat]=[energy|=M L?T 2
heat capacity]=|heat/degree]=M L?*T 20!

[
[
[
- [power]=[energy/time]=M L>*T~3
[
[
[
[specific heat]=[heat/(massx degree)]=L?T—20~!.

e We use 1 to denote the dimensions of a dimensionless quantity.

e.g. [angle] = [arc-length/radius| = L/L =1.
If a theory is extended then more (or possibly fewer) fundamental dimensions may be needed.
e For geometry, L = length is sufficient.
e For kinematics we need L = length and 7" = time.

e For simple mechanics, we need M = mass, L = length and T" = time.

In order to extend mechanics to include thermal properties of bodies we add © for absolute tem-
perature to the fundamental dimensions M, L and T.

In order to extend the theory to include electrical properties we add Q = electric charge.

1.2 Change of Units

Suppose that in some theory the fundamental dimensions are
Ly,Lo,--- Ly,
and that each has a corresponding unit for measuring it. Let
lilo, 1y

be the magnitudes of quantities with these fundamental dimensions relative to the corresponding units.
If the units are changed then we obtain a new set of magnitudes

ikZAklk, kE=1,2,---,n (A >0) (1.1)

where \j are scaling factors associated with the change of units.

Now consider a physical quantity ¢ whose dimensions are derived. We have that the dimensions of ¢
can be written in terms of the fundamental dimensions in the form

(= LhLp 1
Thus its magnitude will change according to the formula
g=Ao 202\, (1.2)
Example 1.5. Let q be a speed in miles per hour and q be the same speed in feet per second then

g =5280 x 3600 ¢

since 1 mile is 5280 feet and 1 hour is 3600 seconds and [q) = LT,



1.3 Physical Laws

An equation that involves the magnitudes g¢i,¢q2,--- ,qn of m physical quantities will be referred to as
a physical law.

Example 1.6. Let = be the distance in feet of an object fallen from rest under gravity and let t be the
time in seconds that have elapsed during the fall, then the physical law is approzimately

x = 16t (1.3)

Note that the law (1.3) is not (in general) correct if the units are changed. If cm are used instead of feet,
the law is & = 490t approximately and hence the law depends on the units used.

Definition 1.1 (Unit free physical laws). Let

flars qm) =0 (1.4)

be a physical law involving the magnitudes qr of m physical quantities. Under a change of units char-
acterized by equation (1.1) each magnitude g, will transform according to an equation of the form (1.2)
(where the exponents by,--- ,b, are determined by the dimensions of qx). The physical law (1.4) is unit
free, if for all scaling factors A1, -+, A (Ar > 0) we have

f((jh a@’n):0<:>f(q17 7Qm):0

Example 1.7. We remarked that x = 16t2 is not unit free. However suppose we introduce gravity g
(measured in feet/sec?) into the law and write it as

1
T = 5th, (1.5)

or
f(x7t7g) = 07
where
L 5

Is this law unit free?

Solution: Change units so that Z = A\jx and = Mgt (\; > 0, i = 1,2). Then because [g] = LT 2, we
have § = A1\, 2g and

f(z,t,9) &

Il
Kl

g

N |

Az (A5 2g9)(Aat)?

1
2

1
= A (x — 59752)

= )\1f($,i7g),
So
f(‘faﬂg) :O<:>f<.’17,t,g) =0

and hence the law (1.5) is unit free.
Remark 1.1.

1) In a unit free law any numbers which appear are dimensionless. (For example, the “1/2” in x =
(1/2)gt*.)

2) If a physical law is unit free then the formula is valid whatever units are used for the fundamental di-
mensions. Thus it makes sense to regard the law as a law connecting the physical quantities themselves
rather than their magnitudes relative to some system of units.



1.4 Buckingham Pi Theorem

From z,¢ and g in Example 1.7 we can form the dimensionless quantity

x
T =—
1 gt2 )
since
1] L 1
T = = =
YL
Furthermore the unit free law (1.5) can be written as
1
™ = 5

However from x and t alone we cannot form a dimensionless quantity and there is no way that we can
express the foot/second version (1.3) (or cm/sec version, etc) in terms of dimensionless quantities.

The ability to express unit free laws in terms of dimensionless quantities is the essential content of the
Buckingham Pi Theorem.
Before we state the Buckingham Pi Theorem we will recall the definition of the rank of a matrix.

e The row (column) rank of a matrix is the number of rows (columns) that are linearly indepen-
dent.

e The rows (columns) in a matrix are linearly independent if they can not be written as a linear
combination of the other rows (columns).

e The row rank is equal to the column rank and they are simply called the rank of a matrix.

e The easiest way to compute the rank is by Gaussian elimination. The row-echelon form of a matrix
A produced by the Gauss algorithm has the same rank as A, and its rank can be read off as the
number of non-zero rows.

Theorem 1.1 (Buckingham Pi Theorem). Let

f(Q17q2a 7Q'm):0 (16)
be a unit free physical law that relates the positive magnitudes q1,qs, -+ , qm of m physical quantities. Let
the dimensions of these be given by

[Qk] — L?lkLng .. L?Lnk (17)
relative to a set of fundamental dimensions L1, Lo,--- , L,.

Let A be the n x m matriz with coefficients {a;i}. We say that A is the dimension matriz associated with
the law whose elements are the exponents occurring in (1.7).

If r =rank of A then there exists (m —r) independent dimensionless quantities w1, 7o, -+ , Tm—y that can
be formed from combinations of q1,- -+ ,qm and the physical law is equivalent to one of the form
F(m, 72, Tm—y) =0 (1.8)

which involves only the dimensionless quantities.
Proof. We try to find a dimensionless quantity of the form
T =q7'gs? gy with [1] = 1. (1.9)
Since
) = (@] gl - lgm]™ with [ = I, L9

we have
n

m] =[] LFF= s =T L0 = 1.
j=1

Jj=1



Hence for each j =1,2,--- ,n we have

a1
m s
Zajkak =0 & Aa=0 where o=
k=1
Qi
Thus the condition that = be dimensionless then leads to
Aa=0, (1.10)
where A = {a;;} is the dimension matrix and a = [aq a2 --- a,]T is the column vector of exponents
occurring in (1.9). We then use a theorem from linear algebra to justify the claim of the Buckingham
Pi Theorem that there are (m — r) independent dimensionless quantities 71, s, -+ , 7 —, that can be
formed from ¢i,q2, - ,qm. These quantities are obtained by taking (m — r) independent solutions of

(1.10), which exist because the solution space of (1.10) has dimension (m — r).
It remains to show that the physical law (1.6) is equivalent to one of the form

F(7T137T27"' aﬂ—mf’r) = 07

involving only the dimensionless quantities. We do this by using the fact that the given law (1.6) is
unit-free and by drawing on the method of solving (1.10) by Gaussian elimination.
Gaussian elimination leads to a row-reduced echelon matrix E that is row-equivalent to A. The matrix
E has r non-zero rows (as rank A = r), each with one as its leading non-zero term, with zeros above and
below this one (as E is row-reduced). If r < n, then the (n — r) rows of zeros can be discarded, as they
contain no information, and the resulting matrix (which we still denote E) is then r x m. Without loss
of generality, we can then reorder the magnitudes ¢, - , ¢ so that the columns containing a single one
with zeros above and below (as generated by the row-reduction) occupy the first r positions. Then E has
the form

E = [LI(-B)), (1.11)

where I, is an r X r unit matrix and B is an 7 x (m — ) matrix. (The minus sign is for later convenience.)
The general solution to (1.11) is then given by regarding the (m — r) unknowns o,11,Qpy2, "+ , @y, as
arbitrary parameters, with the r unknowns ay, ag, - - , o, determined in terms of them by (1.11):

m—r
a; = ijkar+k (j:]-» 77')7
k=1

where {b;,} = B. Taking a,41 = 1 and the other a, ;1 = 0, gives the solution

ap = b1, ag =bar, -+, @ = b,
arp1 =1, app2 =0, ap =0,
which yields the dimensionless quantity
m = (0" g5 40 ) dr -
Similarly, taking a;12 = 1 and the other o, = 0, we get

bia b b,
2 = (4,7 ¢5°" - 4,7%)@rt2,

and we can proceed in this way to get (m — r) dimensionless quantities, the general one of which is

b1 bos .
my = (qlquzw .. 'qﬁ”)q'r‘+j' (112)
So, for j =1,--- ,m —r, we can express ¢,4; in terms of m; and qq,--- , g
(b1 b2 briy—1 113
Qg =@ g g ) (1.13)



Hence, we can write the given law (1.6) as

1\ — b1, m—r b ,m—r rm—r\— _
f((hv"' aqrvﬂl(ql{quzl"'qgﬂ) 1» aﬂ—m*T(qIL q22 qlr) ) 1) =0. (1'14)

The equivalent law F(my,--+ ,Tm—r) = 0 is then obtained by what amounts to setting g1 = g2 = -+ =
¢~ = 1 in (1.14). The argument depends on the fact that the given law is unit-free, and is as follows.
Because the law is unit-free, we have

f(QI7"' aQM):O < f((jlv 7@m>:03

where @1, -+ , G are new magnitudes given by equations of the form (1.2). These new magnitudes arise
when magnitudes having fundamental dimensions change according to (1.1). We shall show that for any
set of magnitudes g1, -, gm with each g; > 0, there exist conversion factors Ay, --- , A, that result in

G=G==q =1 (1.15)
We shall then have
f(Q1a7q’m):0 A f(QI77qm):0 ~ f(la"'7177{-17"')777”—7'):07

and defining F' by
F(ﬂ-lf" >7rm77‘) :f(1> a177r1a"' aﬂ-mfr)

will then complete the proof.

All that remains to be done is to show that we can indeed find conversion factors A; such that (1.15)
holds.

Since our magnitudes have dimensions given by (1.7) and corresponding to (1.2) we have

qj:ATUAgzj”')‘gznjqj (j:L"' 7m)'
For any given q1,- - , ¢m, we need Aq,---, A, such that (1.15) holds. So, we need Aq,--- , A, such that
1= ATV c Mg (F=1, 7).
Taking logarithms, we see that we need values of A1, -, \, satisfying
a;InA +agjIndo+---+apjlnh, =—Ing; (Gj=1,---,7r).

(Note that it is here that we use the restriction that each ¢ is positive.) That is, we need to solve the
inhomogeneous system
CX =D, (1.16)

where
X =[nA;, In)g, -+, In)\,)%, D=[-Inq, —Ing, --- —Ing,]T

and C = AT, Here A, denotes the n x r matrix comprising of the first » columns of the dimension matrix
A.
Now, we ordered the magnitudes g so that by means of row operators we obtained

I
A — | =],
' [0}
where I, is an r X r unit matrix and O is a matrix of zeros. So

rank C' = rank ATT =rank A, = rank I, = r,

showing that C has full rank. This implies that (1.16) can always be solved to obtain conversion factors

A1, 5 Ay that, for any g1, -+, ¢ (with each g > 0), produce the result (1.15), as required. O
Remark 1.2. The exponents c; fori=1,2,--- ,m of each of the (m — r) dimensionless quantities
Wj:qfclqu"'qzézm j:1727"'7m_r

can be obtained by finding m — r linearly independent solutions of Aa = Q.



m
Figure 1: A simple pendulum.

Example 1.8. Is it true to assume that the period T of a simple pendulum depends on its length [, the
mass m of its ‘bob’ and the acceleration due to gravity g? (See Figure 1).

Solution:
Let us assume a unit free law of the form

f(r,l,m,g) =0. (1.17)

Since the dimensions are
[T] = Tv [” = La [m] = Ma [g] = LT?2

we have the following dimension matrix

cor 3
Ok O ~
— o O N

M
L
T

with rank A=3.
From the Buckingham Pi theorem we have that the unit-free law (1.17) is equivalent to one involving
m — r dimensionless quantities. Since m = 4 and r = 3 there exists 1 dimensionless quantity

T =m Y2 g
such that the unit free law (1.17) is equivalent to a unit free law of the form
F(m)=0

involving one dimensionless quantity m = m®1[*27%3 g4,
To find a1, as, a3, a4 we find a basis for the solution space of the homogeneous system Aa =0

a1 = 0,
(6%} +OL4 = 0,
as —2a4 =0.
If we choose ay = —1 it follows that a; =0, a3 = 2 and a4 = 1 and hence
a=10,-1,21] (1.18)
giving
T = mt[¥2T¥ g
— m0l 172
g

l )

as a dimensionless quantity.



initial velocity u

time t

Figure 2: Descent under gravity

Thus the law for period is equivalent to one of the form
F(rg/l) =0,

where F(+) is an unknown function, so the law does not depend on m as we had assumed.
From this we can infer that

T2g
- = constant = ¢, say (a zero of F),

iLe. T =c\/1/g

(Actually the simplest theory involving Newton’s law of motion = 7 = 2w+/l/g.)

Example 1.9. Show that the law for descent under gravity for a body which has an initial downward
velocity u (see Figure 2) can be written in terms of two dimensionless quantities.

Solution: We assume, a unit free law of the form
f(@,t,g,u) = 0. (1.19)

Then the dimension matrix is
z t g u

L{1 0 1 1

T (0 1 =2 —1) =4
with rank A=2. Since the law is unit free we can apply the Buckingham Pi theorem which says that
there are m — r = 4 — 2 = 2 dimensionless quantities m; and 7o, such that we have an equivalent unit

free law to (1.19) of the form
F(ﬂ'l,ﬂ'g) =0.

Furthermore 7; and 7o are chosen by taking two independent solutions of Aa =0

o +az  +ag =0,

= ay —2a3 —ayg =0. (1.20)
If we choose a3 = 1 and a4 = 0 it follows that a3 = —1 and as = 2. Whereas choosing a3 = 0 and
ay = 1 it follows that a; = —1 and @y = 1. and hence two independent solutions are:
a=[-121 O]T =[og a2 a3 a4]T and a=[-110 l]T = [oq a2 a3 a4]T.

Since
T =zt geyr

we have that
m =a 't2gru’ = t?g/r and T =2 g% = ut/x.

Hence the Buckingham Pi theorem says that there is an equivalent law to (1.19) of the form

2 ut
F(my,m) = F <9x $> —0. (1.21)



The actual law is given by solving

Integrating & = g once with respect to ¢ gives
T=gt+c
and since #(0) = u we have & = gt + u. Integrating again and using z(0) = 0 then gives

1, ut 1 gt 1
r=ut+ -gt* = 1l=—+_-"—=mx+-m
2 T 2 x 2

1
= 57‘(1 + 7o — 1=0.
Hence the F in (1.21) is given by F (71, m2) = 71/2 + m2 — 1.

Remark 1.3. In the general case where A is n X m and rank A = r the solution space has dimension
(m —r) and we have (m —r) basis vectors

Qe Qe (s0Y)
each of which holds a dimensionless combination of physical quantities that yield w1, -« , Tp_p.
For the equivalent law we can use any set of (m — r) independent solutions in order to yield our dimen-
sionless quantities 71, - , Tm—r and an equivalent law F(my, 7o, ,Tm—r) = 0.

Example 1.9 (Revisited)
Set 11 = m1 and find a dimensionless quantity Ty that is different to mo such that (1.19) can be written
in the form

F(71,72) =0.
Solution:
Choosing g = 1 and oy = 1 in (1.20) yields
a=[-2311"
and hence two independent solutions are
a=[-1210"7 =1 ao a3 ag]’ and a=[-2311]7 =[5 as a3 ay]”

which yield the dimensionless quantities

t2g

- t3 2 ut
“Pgtu’ = =m and 7o =ax 3¢ ul = ugr. _gv v
xr

7~T1:$ 2 — = T172.
T x T

The Buckingham Pi theorem says that there exists an equivalent law to (1.19) of the form

F(7~T1,7~T2) =0 = 0= F(7T1,7T17T2).
By setting F(z1, 23) := f(zl, z172) we have consistency between the two laws.

Remark 1.4. When a physical law is written in the form

f(q17q27"' 7CIm) :07

we can always rewrite it in the form
am =9(q1," ", Gm—1)

provided
0
i(qh e 7Qm) 7& 07

0T,

(Implicit Function Theorem - Function of Several Variables).
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Example 1.10. Suppose one wishes to determine the power P that must be applied to keep a ship of
length I moving at a constant speed V. It seems reasonable to assume that P depends on the density
of water p, the acceleration due to gravity g and the kinematic viscosity of water v (measured in length
squared per unit time), as well as on | and V. Show that any unit-free law connecting these quantities is

equivalent to one of the form
P

W = h(FT, Re), (122)
where Fr and Re denote the Froude and Reynolds numbers defined by
l
Fr= L Re = K

Vig’ v
Solution:
Assume a unit-free law of the form g(P, 1, p, g,v,V) = 0. The dimension matrix A is

P L p g v V

M1 0 1 0 0 0
L 2 1 -3 1 2 1 = A.
T \-3 0 0 -2 -1 -1

Subtracting 2R; from Ry and adding 3R; to R3 gives

Pl p g v V
M1 0 1 0 0 0
L{10 1 -5 1 2 1
T \0 0 3 -2 -1 -1

so rank A =3 and there are 6 — 3 = 3 independent solutions. A check verifies that the following are
solutions: a; =[1 =2 =100 =37, a,=[0 —30 —201]T andaz =[0100 —1 1]7 (note that
these solutions are chosen by looking at the exponents of P, I, p, g, v and V in Fr, Re and P/(pl*>V?))
. They are clearly independent and yield the dimensionless quantities
P \% Vi
T = —5—z, Mg =——, T3=—
v T g P
and the equivalent law G(my, 72, m3) = 0 which can be written as m; = h(mg,73), i.e. as (1.22).

Remark 1.5. The above solutions a; = [1 —2 =100 =37, ay =0 —20 —21 017 and

a;=[0100 —11]7 are independent since the (6 x 3) matriz

1 0 o
2 12 1
10 o0

B=1 0o _12 o0
0 0 -1
-3 1 1

can be transformed using row operations into one which contains the (3 x 3) identity matrix.

1.5 Scaling

An initial value problem (IVP) or a boundary value problem (BVP) comprises of a differential equation
(or a system of equations) together with sufficient initial or boundary conditions to ensure that a unique
solution exists. (Equations could be ODEs or PDEs.)

We are interested in problems where the variables appearing in the equation together with the parameters
or coefficients are physical quantities with dimensions.

The basic idea of scaling is to take each variable ¢ and find a characteristic value g. with which it can
be compared and then to replace ¢ by the dimensionless variable § := q/qc.

The characteristic values g. act as “natural” units and their use should result in scaled magnitudes ¢
which are of moderate size.

11



X= x=l end on
Figure 3:

Example 1.11. (The derivation of the one dimensional heat equation)

Derive a model for the temperature distribution in a rod made up of some homogeneous material (see
Figure 3) where except for at the end-points, the rod is insulated. In the model assume that heat flows in
x—direction only and that the temperature is constant in any cross section (which has area A).

Solution:

Let uw denote the temperature and by the assumption that heat flows in x—direction only we have
u = u(x,t), where ¢ is time.

Since the rod is made up of some homogeneous material we have that

C, = Specific heat at constant volume (= amount of heat energy required to raise one unit mass one
degree of temperature (e.g. calories/gramsx°C)) and p = density of material (=mass/unit volume). Here
C, and p are constants.

If we consider a thin slice of the rod with width dx then the amount of heat energy in the slice is
approximately C,(pAdx)u(x,t). Hence for any region 1 < x < x2 of rod (with z; and x2 in (0,1)) the
total amount of heat energy in this region is f CypAu(z,t)dz.

On the other hand there is a flux of heat energy across each cross section. Let ¢(x,t) denote the heat
flux (amount of heat flowing) though the cross-section at x at time ¢ (see Figure 4).
By definition the rate of change of heat energy with respect to time contained in 1 < x < x5 is

d [

— A .
i/, pCru(z, t)dx

By conservation of heat energy we have
d [*?
G [ asCuutende = aer0) - oo ).
1

which we can rewrite as g e * gl 1)
a\z,
= | ApCou(x,t)de = — 2 g 1.23
il pCru(z, t)dx /z 5 0 (1.23)

1

Since Fourier’s law tells us that 6
u

where K is the thermal conductivity (amount of heat ﬂowmg across a unit length per unit degree) we

have that P

/ ApC, gt (z,t)dx = KA—(:E t)dz,

0*u K
é/ <8tmt 82( )>dr() Wherenfpcv.

Equation (1.24) holds for all intervals (1, 23) in (0,1).

(1.24)

Lemma 1.1 (DuBois - Raymond). Let f be continuous on (0,1). Suppose for all intervals (x1,x2)

contained in (0,1) that
x2
[ rwa =
z1

12



<H a0 ) @H 9050
X

Xs

Figure 4: Heat flux in a rod

It follows that f(x) = 0,Vz € (0,1).
Hence by DuBois - Raymond, we have

2

%(x,t) - H%(x,t) =0, VYaze(0,l). (1.25)
Equation (1.25) is the heat equation. It is one of the most important (and ubiquitous) equations in
mathematics, in it kK = K/(pC,) is the thermal diffusivity.
The heat equation is a partial differential equation for the function u(z,t). We consider the case where
(1.25) holds in the space time region 0 < z < I, > 0. Let us suppose that we have a situation where the
temperature of the rod is initially zero, i.e.,

u(z,0) =0, Vaxel0,l.

Suppose we now raise the temperature at the ends to be ug > 0. This gives us an initial boundary value
problem for the unknown temperature u(z,t).

In this initial boundary value problem we have the variables u,x and t and the parameters k,l and ug
with

variables parameters
u x t |1 u K
Dimension | ®© L T |L © L*T!

Note that the fact that [x] = L?*T~! can be deduced from the dimensionally correct partial differential
equation uy = Kugy:

[’f] = [“t/um]
= [Ut]/[um]

_ O g,

Example 1.12 (Dimensionless form of the heat equation).
We have derived the following initial boundary value problem for the flow of heat in a rod:
Find (z,t) such that

Up = Kllgg, 0 < x <[, t>0,
U(O,t) = Uo, u(l,t) =ug, t> Oa
u(z,0) =0, 0 <z <,

where ug s a given positive constant.
Choose characteristic values for the variables in order to write the heat equation in dimensionless form.

Solution: In this case, it is natural to choose
_ _ g2
Ue = U, Te =1, t =1"/K

giving the dimensionless variables

u=—, T= t=— = u=uol, =17, t = —t.
Up l K

u T tK 12
) l 9
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A

Figure 5: Projectile problem.

Under this change of variables we have u(z,t) — u(z,t) .
Using the chain rule (for example) we can derive the problem satisfied by @ = @(z, ). Since

ou o1 ou ot gk Ou
= uoi = =

at ot~ "otot . 2 ot

U = ugt =

Similarly,
ou ou oudxr  ugOu
9r  "oxr  “ozor 10z
A second differentiation gives
O*u  ug 9*u

a2 12 972

Initial/boundary conditions become

uot(z,0) =0 a(z,0) =0
{ uga(oj) = wi(1,f) =ug = { a(0,7) = upa(1,8) = 1

Remark: Alternatively we could use

ou  O(uou)  ug Ou Ko
— a7/..7/19%0\ 19 Yt

ot a(k/12t)  2/k ot I2

and
O*u  9%(uou) wg Ou Uo .

ox2 ~ 0(2z?) 2oz 12

Thus we have the following dimensionless form of the heat equation

with boundary conditions
and initial conditions

This is one problem for u; solving it yields the solution to our original problem for any k,[l,ug by
transforming back into its original variables.

Example 1.13. We consider a projectile launched vertically upwarding from the earth’s surface with the
assumptions that air resistance and the rotation of the earth are neglected. The equation of motion for
the projectile is given by
h(t) = Ry (1.26)
(R+h)? '
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with initial data .
h(0)=0, h(0)=V >0. (1.27)

Here (see Figure 5)
R radius of earth
g gravity
h(t) height of projectile at time t.

Choose characteristic value for the variables so that the problem can be written in terms of the dimen-
sionless variables h = h/h. and t = t/t. and one dimensionless constant €.

Solution:
We have the following variables and parameters: h, t, R, g and V

Variables Parameters
h t R g \%
Dimensions | L T L LT 2?2 LT7?

‘We now choose characteristic value for the variables.
Version A

he=R = h=h/h.=h/R
te=R/V = t=t/t.=Vt/R.

The problem becomes:
ch(t) = ———

where e = V2/gR is dimensionless.

Version B -
he=R, to=(R/g)'* = h=h/R, t=t/(R/g)"/>.

The problem becomes:

20 —1 _ =
h(t) = ———, h(0) =0, h(0) = Ve,
() = g MO =0 h0) = vE
where e = V2/gR is dimensionless.
Version C
& V -
he=—, te=— = h=hg/V? t=tg/V).
g g
The problem becomes:
= —1 — =
h(t) = — =0, h(0) =1,
)= 5z PO =0 5O

where e = V2/gR is dimensionless.

These three versions are all examples of scaling. Is any one better or more appropriate than the others?
Is one of them correct?

The answer depends on the values of the parameters we are interested in and what problems we wish to
answer.

Suppose we are interested in motion near the earth surface, this is associated with a small initial velocity
V. Then € = V?/(gR) is assumed to be small. So neglecting ¢, i.e., putting it equal to zero in our three
versions should give an approximation to the problem we wish to solve.

Approximation A

(1+1i3)2; h(0) =0, h(0) =1,

(does not make sense).

15



Approximation B

-1 _ .
(1+h)?

(cannot be right for our purposes as h becomes negative immediately.)

}T.L:

Approximation C

- _ 1
Use h = heh, t = t.t.
1
= h(t) =Vt — 5gt2, (1.28)

in original physical variables.

(1.28) is the standard formula for vertical particle motion assuming that acceleration due to gravity is
constant near the earth surface.

The scaling which leads to Approximation C is the most appropriate for small positive initial velocity if
we take ¢ = V2/(gR) as an indicator for the smallness of V.

What could have made us choose this scaling in the first place?

Since we are interested in the problem when is V small, we note that h will also be small and so if we
solve the original problem with h = 0, i.e. if we solve

R2%g .
= — = — h(0)=V, h(0)=0
L= =g, () =V, h(0)
we obtain )
h=—gt+V and h= _i‘th + Vi (1.29)

If we want to find scales i and ¢ will vary on then we see from (1.29) that the maximum height reached
in our approximate model occurs when h = 0 i.e. when ¢ = V/g and that the maximum height is
h=35V?/(gR).

Thus taking t. to be the time that the maximum height is achieved and h. to be twice the maximum
height are natural and appropriate characteristic values with which to scale t and A in this setting.

Example 1.14. FEzxplain how, by using the Buckingham Pi Theorem, we could conclude that any dimen-
stonless version of the projectile problem

. —R?
h(t) = ﬁ’

h(0) =0, h(0)=V.
would involve just one dimensionless parameter.

Solution:
The projectile problem involves the variables and parameters h, ¢, R, g, V and has dimension matrix
A given by

h t R g V
L1 0 1 1 1
T (O 1 0 -2 —1) =4
Clearly rank A = 2, so the Buckingham Pi Theorem implies that any law connecting the 5 parame-

ters/variables would involve 5 — 2 = 3 dimensionless quantities. Two of these are accounted for by the
dimensionless variables h and %, leaving one dimensionless parameter.

16



1.6 Remarks on Scaling

General idea : Work with dimensionless variables and coefficients, obtained by selecting appropriate
characteristic values so as to obtain a simplification of the problem. (The Buckingham Pi theorem gives
the total number of variables and coefficients involved.) Correct or appropriate scaling satisfies the
following criteria :-

(a) Characteristic values are truly characteristic. That is each ¢, is a typical or representative value of
the corresponding variable ¢ so that the scaled variable § = ¢/q. is of ‘moderate’ size.

(b) Any dimensionless coefficient appearing in a term should give the size of the term in which it appears.
The quantity it multiplies should have moderate size.

Remark 1.6.

(i) The notion of ‘moderate size’ can be made more precise in terms of orders of magnitude. (See
Lin/Segel for a discussion.)

(i) The point of (b) is that by looking at a term in the equation we should be able to estimate its size
simply by looking at the coefficient and not have to consider the size of the variables in that term.

(iii) A ‘correct’ scaling satisfying (a) and (b) may be valid only for limited ranges of the variables and
parameters involved. Other ranges may require other scaling.

(iv) Suppose we have a ‘correct’ scaling with t. as a characteristic time. We refer to t. as the time scale.
A multi-time scale problem is one that requires different time scales for different ranges of time in
order to achieve appropriate scaling. (Similar terminology is used for other variables.)

Example 1.15. Consider the motion in an almost linear resistive medium, with equation of motion given

by:
dv
m—— = —aV + bV V(0) = V. (1.30)
Here
m = mass of object,
V= welocity of object,
T = lime

and we suppose that a and b are constants with a > 0 and b > 0 “small”. Find suitable characteristic
values V. and 7. so that the equation can be written in terms of the dimensionless variables v = V/V,
and t = 7/7. and one dimensionless constant .

Solution:
First we rewrite the equation as

o) - sw

dr  m
and we note that we have the following variables and parameters:

14 T
Tt 7

m a b Vo

variables/parameters
M MT-' ML™Y LT '~

Dimensions

Clearly a characteristic value for the velocity is V and hence our new dimensionless variable u is given
by

4

=

u

What about the characteristic time?
We observe that (since b is small) we can solve an approximation to the problem by setting b = 0 giving:

dl:_gv = hlV:—gT-i-C-
dr m m

17



The initial data V(0) = Vp gives C' = In Vj and hence we have
Vv
In () =L 5 V= Ve v/m,
V() m
The half life of V' is the time 7* such that

1
V() =3V = 7= 2.

Hence a characteristic time scale for this problem is 7. = m/a.
So, our dimensionless time variable is

T T a
t=— = = —r
T. mja m
We proceed to write the equation in terms of u and ¢,
d(Vou) a b 9
—— = — |-V -V
d(mt/a) m o+ a( ou)” )
Vo d b
o Vodu . (_H%ug)
m dt m a
d—u = —u+eu?
d '

where € = Vpb/a is small dimensionless constant. For the initial data we have
V()U(O) =V, = U(O) = 1.

Thus we have the rescaled problem

d 1%

d—i‘ = —u+teu?, u(0)= ?Z =1. (1.31)
1.7 Scaling Using Known Functions
Suppose we wish to scale u(x,t) in a problem where we are given a function f(t) such that [f(¢)] = [u]

for t € I where I is some interval appropriate to the problem under consideration. (For example suppose
that w is the water temperature in a lake and f(¢) is some function that gives the average daily water
temperature at a given point in the lake over the previous year).

Suppose f is bounded on I. A standard way of scaling f or u is to take

ue = sup | f(t)]
tel
and to introduce 4 = u/u..
Although the length of I would seem to give an appropriate scale t., this is not always the case (e.g. if
I = R). However if f is differentiable on I with f’(¢) being bounded on I, then we can also obtain a
characteristic value ¢. for ¢ in the following way:

_ Ue _ SUDser |f(t)|
supyer [ /()] supyer [f/(2)]

here t. gives a time interval over which ‘f’ changes ‘the most’.

)

Remark 1.7. When choosing ‘u.’ and ‘t.’ we don’t have to find exactly the supremum of [ and f’,

approrimate values will do.

Example 1.16. Find u. and t. for f(t) = Asin A, t € R where A and A are positive constants.

18



(t)=t+exp(~10000t)

0.5

0.5 1

Figure 6: Example 1.17

Solution:
We have
u. =sup|Asin \t| = A
teR
and
Ue Ue A 1

" SWyeg [F(6)]  supyer [ANcos M AN T X
Note that it might be more convenient to use t. = 2w/ period.
Example 1.17 (Multi-scale). Find u. and t. for
f)=t+e 1% teo,1].
Solution: We have
f'(t) =1 —10000e 10007

The discussion above suggests

uc = sup |f(t)|~1,
te0,1]

so take u. = 1.

For t. the suggestion is
Ue 1

- supyepo,1) 1/ (¢)] ~9999°

However this short time scale t. ~ 10~% is only appropriate only near ¢t = 0, where f () changes rapidly
with ¢ (see Figure 6). The minimum value of f occurs when ¢ = tq given by

0 =1 —10000e %%,

i.e.
to ~ 0.00092 ~ 9¢..
Using ¢ = t/t. changes the interval [0, to] to [0, 9], however the full interval [0, 1] is changed into an interval
with length ~ 10*. Hence there are two time scales in the problem.
If we restrict our analysis to the interval ¢ € [tg, 1] then u. ~ 1 and t. ~ 1 as

sup [f(t)]~1and sup [f'(t)] =1
t€lto,1] t€lto,1]

suggesting u. = 1 and t. = 1. So we should use the scaling :-
u —

t
u=—, t= . where in [0,%9] u. =1, t. =10"*% and in [tg,1] ue. =1, t, = 1.
uC c
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