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Abstract

In this paper the rigorous linking of exact stochastic models to mean-field approx-
imations is studied. Using a continuous time Markov Chain, we start from the exact
formulation of a simple epidemic model on a completely connected network and rig-
orously derive the well-known mean-field approximation that is usually justified based
on biological hypotheses. We propose a unifying framework that incorporates and dis-
cusses the details of two existing proofs and we put forward a new ODE-based proof.
The more well-known proof is based on a first order PDE approximation, while the
other, more technical one, uses Martingale and Semigroup Theory. We present the
main steps of both proofs to investigate their applicability in different modelling con-
texts and to make these ideas more accessible to a broader group of applied researchers.
The main result of the paper is a new ODE-based proof that may serve as a building
block to prove similar convergence results for more complex networks. The new proof
is based on deriving a countable system of ordinary differential equations for the mo-
ments of a distribution of interest and proving a perturbation theorem for this infinite
system.

Keywords: Epidemic model, network, mean-field approximation, countable system of ODEs,
Markov Chain.
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1 Introduction

Complex networks occur in a large variety of real-world systems ranging from ecology and
epidemiology to neuroscience [2, 8, 18]. In most applications networks provide the backbone
on which various dynamical processes unfold. For example, infectious diseases transmit
on intricate social networks, while neurons interact on non-trivial weighted and dynamical
graphs. This underpinned the rapid development of research that seeks to understand how
the structure/topology of the network impacts on the behaviour of different dynamics on
networks [2, 8]. The analysis of even the simplest dynamics on networks can be challenging
mathematically, and often, results are mainly simulation-based. As a result, research in this
direction is fragmented into more theoretical work that explores the rigorous link between
exact stochastic models and their ODE-based mean-field approximations [4, 10, 11, 12], and
work that mainly relies on simulation. While simulations can be straightforward to imple-
ment, the often large number of parameters makes the exploration of the possible behaviours
difficult and generalisation of simulation results is rarely possible. In an effort to increase
tractability and depart from a purely simulation-based approach, various simple differen-
tial equation models have been proposed. These are all different from simple mean-filed
models, which operate on the homogenous random mixing assumption, in that they capture
non-trivial network features such as network heterogeneity, clustering or can accommodate
dynamically evolving networks. These models range from pairwise models [7, 15, 16, 19, 20]
and ODE-based heterogeneous mixing models [9, 14] to probability function (PGF) formal-
ism [21, 22]. However, in almost all cases the performance of these more sophisticated models
are only tested by comparing ODE–based results to pure simulation. Thus, the goodness of
fit is mostly performed by numerical and/or visual inspection without rigorous mathemati-
cal arguments. The major obstacle that precludes a theoretical formalism for comparison is
either due to not being able to derive the Kolmogorov equations or, in the case where this
is possible, these are intractable due to their sheer number.

The problem of rigourously linking exact stochastic models to mean-field approximations
goes back to the early work of Kurtz [10, 11]. Kurtz studied pure-jump density dependent
Markov processes where apart from providing a method for the derivation of the mean-field
model also used solid mathematical arguments to prove the stochastic convergence of the
exact to the mean-field model. His earlier results [10, 11] relied on Trotter type approximation
theorems for operator semigroups. Later on, the results were embedded in a more general
context of Martingale Theory [4]. These results have been cited and extensively used by
modellers in areas such as ecology and epidemiology to justify the validity of heuristically
formulated mean-field models. The existence of several approximation models, often derived
based on different modelling intuitions and approaches, has recently highlighted the need to
try and unify these and test their performance against the exact stochastic models [5]. Some
steps in this directions have been made [1, 13], where authors clearly state the link between
exact and mean-field models.

The present paper, in the case of a simple SIS model and for a completely connected
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graph, proposes a unifying framework that incorporates and discusses the details of two
existing proofs and proposes a new ODE-based proof. This complements and offers an
alternative to the existing ones which are purely based on Stochastic Theory and PDE
arguments. The paper is organised as follows. In Section 2, the model is formulated and we
present the main result in general terms and discuss the three different approaches used to
prove the convergence of the exact stochastic to the mean-field model. In Section 3, we give
the detailed proof based on PDE arguments, while in Section 4 the proof based on stochastic
theory arguments is presented. Section 5 contains the new ODE-based approach, with pluses
and minuses of the three different models included in the final Section.

2 Model

In a recent work we formulated a simple epidemic model on an arbitrary graph using Markov
Chains and have provided an algorithmic method for the derivation of the Kolmogorov
equations [17]. Furthermore, we have formalised the link between the automorphism group
of the graph and lumping which allows to significantly reduce the number of Kolmogorov
equations to a tractable yet exact system. Here we use the formalism introduced in that
paper.

Let us consider the simple SIS type dynamics on a complete graph with N nodes. It is
known that in this case the 2N -dimensional system of Kolmogorov equations can be lumped
to an N + 1-dimensional system [17], where the variables xk(t) represent the probability of
finding states with k infectious nodes. The lumped Kolmogorov equations take the form

ẋk = ak−1xk−1 − bkxk + ck+1xk+1, k = 0, 1, . . . , N, (1)

where

ak = βk(N − k)/N, ck = γk, bk = ak + ck, a−1 = 0 = cN+1. (2)

Let us assume that initially the number of infected nodes is k0. Thus the initial condition
to (1) is

xk0(0) = 1, xk(0) = 0 for k 6= k0. (3)

The expected value of the number of infected nodes is

[I](t) =
N∑
k=0

kxk(t). (4)

Differentiating [I] with respect to time and using the Kolmogorov equations for xk one
can derive the following differential equation for [I],

˙[I] =
β

N
[SI]− γ[I], (5)
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where

[SI](t) =
N∑
k=0

k(N − k)xk(t)

is the expected value of SI edges at time t. Equation (5) cannot be used to determine the
expected value [I], since [SI] cannot be expressed in terms of [I]. However, the approximation

[SI] ≈ [S][I] = (N − [I])[I]

yields a self-contained approximating differential equation for [I]. Substituting this approxi-
mation into equation (5) and dividing by N , we introduce the variable i(t) instead of [I](t)/N .
Then for i the following simple differential equation holds

i̇ = βi(1− i)− γi. (6)

This equation is known as the mean-field approximation of the original Kolmogorov equation
(1). It is well-known that i(t) is a good approximation of [I](t)/N , in the following sense.

Theorem 1 If i(0) = [I](0)/N , then for any t ≥ 0 we have

lim
N→∞

[I](t)

N
= i(t).

In fact, the statement of the Theorem is not rigorous in this form since the type of the
convergence is not specified and this will depend on the method of proof. There are basically
two different methods of proof and these yield different types of limits. The two main
approaches use (a) first order PDE and (b) martingale and semigroup theory arguments.

The first order PDE approach yields that [I](t)/N tends to i(t) for any fixed t. This is the
most intuitive approach since it is based on the idea that for large N the discrete distribution
xk(t) can be approximated by a continuous density function. The exact statement that can
be proved by using this method is presented in Theorem 2. The main steps of the proof can
be found in the Appendix of [3], however not all details of the rigorous mathematical proof
are presented there. In [17] a rigorous proof is given and for sake of completeness we briefly
summarise this in Section 3.

The stochastic approach yields that the stochastic variable I(t)/N (not the expected
value) tends stochastically to i(t). This implies that the expected value [I](t)/N also tends
to i(t). The statement is formulated in exact terms in Theorem 3. The Theorem is proved in
several different ways in [4, 10, 11]. The first proof was based on a Trotter type approximation
theorem for semigroups followed by a proof based on martingale theory. The proof in [4],
which is valid in a general context, reduces the problem to the study of Poisson processes
by using the previously developed semigroup and martingale techniques. In Section 4, we
present the main steps of the proof in [4] applied to our special setting. This enables the
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reader to follow the main ideas of the stochastic proof without going into and understanding
the technical details of the original proof in [4].

The main purpose of this paper is to show a new, ODE-based approach. We will call
this an elementary approach, since a self-contained proof of the Theorem will be shown
without using a combination of highly specialist mathematical tools from different areas, the
availability of which is beyond the opportunities of the average scientist working in math-
ematical ecology, epidemiology or other applied research areas. Moreover, this elementary
proof may lead to future work where proving similar results for more complex networks can
be attempted. According to our knowledge the above Theorem has not been generalised to
more complicated networks by using the two more sophisticated approaches.

Our elementary, ODE-based approach, presented in Section 5, yields that [I](t)/N tends
uniformly on bounded time intervals to i(t). Moreover, we also give an upper estimate for
the difference in terms of network size N , and we prove that i(t) is an upper approximation
of [I](t)/N . According to our knowledge, this has not been previously verified and it does
not follow from the previous two approaches.

3 First order PDE approach

In this Section, the first proof of Theorem 1 is given. The main idea of the proof is based
on the observation that for large N the discrete distribution xk(t) can be approximated by a
continuous density function ρ(t, z). The rigorous version of Theorem 1 in this context reads
as follows.

Theorem 2 If i(0) = [I](0)/N , then for any t > 0 we have

lim
N→∞

|i(t)− [I](t)

N
| = 0.

Let us introduce a continuous, time dependent density function ρ(t, z) instead of the
discrete distribution xk(t), with the following formal relation, z = k/N . Following this, ẋk,
xk(t), xk−1(t) and xk+1(t) in (1) can be formally change to ∂tρ(t, z), ρ(t, z), ρ(t, z − 1/N)
and ρ(t, z + 1/N), respectively. This leads to the following partial differential equation,

∂tρ(t, z) = (Nz + 1)γρ(t, z + 1/N) + (Nz − 1)(N −Nz + 1)ρ(t, z − 1/N)β/N−

(Nz(N −Nz)β/N +Nzγ)ρ(t, z).

Now using the approximations

ρ(t, z + 1/N) = ρ(t, z) + ∂zρ(t, z)/N, ρ(t, z − 1/N) = ρ(t, z)− ∂zρ(t, z)/N,
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neglecting the 1/N and 1/N2 terms and writing ρ instead of ρ(t, z), after some algebra, the
following first order partial differential equation for ρ is obtained

∂tρ = zγ∂zρ+ (2z − 1)βρ− z(1− z)β∂zρ+ γρ.

Introducing the function g(z) = γz − βz(1− z), the equation for ρ becomes

∂tρ = ∂z(gρ). (7)

This first order partial differential equation needs an initial condition of the following type

ρ(0, z) = ρ0(z). (8)

Since the formal relation between the variables is z = k/N , the initial condition (3) yields

ρ0(z) = 1 for
k0

N
< z <

k0 + 1

N
and ρ0(z) = 0 otherwise.

Finally, the expected value of the infected nodes from the first order PDE needs to be
determined. Thus, we have to find the function corresponding to [iN ](t) = [I](t)/N in
(4). Using z = k/N and changing the term xk(t) to ρ(t, z), we note that the sums in (4)
correspond to an integral. Namely, [iN ](t) corresponds to

N
N∑
k=0

k

N
ρ(t,

k

N
)

1

N
,

and this sum is an approximation of the integral

N

∫ 1

0

zρ(t, z)dz.

Noticing that
∫ 1

0
ρ0(z)dz = 1/N , we can introduce i∗(t) as a function corresponding to [iN ](t)

as follows

i∗(t) =

∫ 1

0
zρ(t, z)dz∫ 1

0
ρ0(z)dz

. (9)

The mean-field equation (6) can be solved explicitly and the solution is given by

i(t) =
B(t)i0

β − γ − A(t)i0
,

where i0 = i(0) is the initial condition and

A(t) = β − β exp((β − γ)t), B(t) = (β − γ) exp((β − γ)t).
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The first order PDE (7) can also be solved explicitly, and then (9) yields

i∗(t) =
B(t)

A(t)

[
−1 +

N(β − γ)

A(t)
log

(
1 +

2A(t)

2N(β − γ − A(t)i0)− A

)]
.

Having these explicit formulas for i∗(t) and i(t), it is easy to see that i∗ is not a solution of
the mean-field equation (6) but it can be proved that as N →∞ it tends to the solution of
(6). Namely, we have the following Lemma.

Lemma 1 Let ρ be the solution of the system (7)-(8). Let i∗(t) be defined by (9). Let i(t) be
the solution of the scaled mean-field equation given by (6) with initial condition i(0) = k0/N .
Then for any t ≥ 0 we have

lim
N→∞

|i(t)− i∗(t)| = 0.

The Lemma can be proved by using the explicit formulas for i∗(t) and i(t).
Now the proof of Theorem 2 can be concluded as follows. We want to prove that the

scaled expected value [iN ](t) tends to the solution i(t) of the scaled mean-field equation as
N → ∞. In order to prove this, we introduced a first order PDE that can be considered
the limit of (1) as N →∞. Using this PDE, we defined the function i∗(t) that corresponds
to [iN ](t). According to Lemma 1, i∗(t) is close to i(t) for large N . Hence, we only have to
show finally that [iN ](t) is close to i∗(t). Thus the proof of Theorem 2 will be complete if
the following Lemma is verified.

Lemma 2 Let xk be the solution of (1) satisfying the initial condition given by (3), and let
ρ be the solution of (7) with initial condition given by (8). Let [iN ](t) = [I](t)/N and let
[I](t) and i∗(t) be defined by (4) and (9). Then for any t ≥ 0 we have

lim
N→∞

|[iN ](t)− i∗(t)| = 0.

The proof of the Lemma is based on the fact that system (1) can be considered as the
discretisation of the first order PDE (7) in the variable z. It is known even for more general
PDEs, see e.g. Chapters 3 and 4 in [6], that the solution of the discretised system tends
to that of the PDE as the step size of the discretisation goes to zero, that is in our case N
tends to infinity.

4 Stochastic proof of Theorem 1

Let us denote by (I(t))t≥0 the stochastic process that determines the number of infected
nodes at time t. In this Section, we will prove that I(t)/N converges stochastically to i(t)
as N →∞, this is formulated in the following Theorem.
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Theorem 3 If i(0) = [I](0)/N , then for any T > 0 there exist K > 0, such that for any
δ > 0 we have

P (|i(t)− I(t)

N
| > δ) ≤ K

Nδ2
, for all t ∈ [0, T ].

It is important to note that this theorem is stronger than Theorem 1 since it implies that
the expected value of I(t) converges to i(t).

Before going into the details of the proof we note that this approach can be generalised
to so-called density dependent Markov chains. In our case, this means that there exist two
continuous functions A,C : R→ R, such that the transition coefficients in the Kolmogorov
equation (1) can expressed as,

ak
N

= A(
k

N
),

ck
N

= C(
k

N
).

From (2), these functions are

A(z) = βz(1− z), C(z) = γz.

Following Kurtz [10], we introduce F (z) = A(z)−C(z). This is motivated by being relatively
easy to derive the following equation,

E(I(t)) = E(I(0)) +

t∫
0

E(F (I(s)))ds,

where E stands for the expected value (hence E(I(t)) = [I](t)). Therefore, if F and E
commute (i.e. E(F (I)) = F (E(I))), the expected value of [I] satisfies the following mean-
field equation,

˙[I] = F ([I]). (10)

At this stage, it is worth noting that for certain scenarios, simple arguments can be
used to derive the mean-field equations without further precise mathematical arguments.
Namely, when the Kolmogorov equations are numerically tractable, the precise evolution of
the probability distribution over time can be computed. If this distribution proves to be
unimodal and highly picked, then F and E commute at least approximately and then (10)
follows immediately.

The main step of this approach is to prove that I(t) can be expressed as follows.

I(t) = I(0) + Y1

 t∫
0

βI(s)
S(s)

N
ds

− Y2

 t∫
0

γI(s) ds

 , (11)
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where Y1 and Y2 are standard Poisson processes (with λ = 1). The equation in this form can
be found in [12] and in Section 2 of Chapter 11 in [4]. The derivation is based on Martingale
and Semigroup theory and it can be found in [4]. The choice of this equation as a starting
point is also motivated by its ease of intuitive interpretation. The Poisson process Y1 counts
the number of infections in the time interval [0, t] the intensity of which can be expressed by
the integral in the argument of Y1. Similarly, the Poisson process Y2 counts the number of
recoveries in the time interval [0, t] the intensity of which can be expressed by the integral
in the argument of Y2.

We note that the earlier approach of Kurtz in [10, 11] does not use Martingale theory.
In these two papers a self-contained proof can be found and can be followed without under-
standing the notations and most of the preliminary work presented in Chapters 3 and 4 of
the book [4].

Let us introduce

iN(t) =
I(t)

N
(12)

and Ỹi(τ) = Yi(τ) − τ , which is a Poisson process centered at its expectation, that is
E(Ỹi(τ)) = 0 for all τ .

Dividing (11) by N , after some simple calculations, we get

iN(t) = iN(0) +

t∫
0

F (iN(s))ds+
1

N
Ỹ1

 t∫
0

βI(s)
S(s)

N
ds

− 1

N
Ỹ2

 t∫
0

γI(s) ds

 . (13)

If t ∈ [0, T ] then the value of the integral in Ỹ1 is bounded by 0 and βNT , and the value
of the integral in Ỹ2 is bounded by 0 and γNT . Hence the following inequalities hold true

sup
t∈[0,T ]

∣∣∣∣∣∣Ỹ1

 t∫
0

βI(s)
S(s)

N
ds

∣∣∣∣∣∣ ≤ Ỹ1(βNT ), sup
t∈[0,T ]

∣∣∣∣∣∣Ỹ2

 t∫
0

γI(s) ds

∣∣∣∣∣∣ ≤ Ỹ2(γNT ).

(14)
The proof is now based on the following Proposition, a Law of Large Numbers type

statement, and can be proved by using Chebyshev’s inequality like the LLN.

Proposition 1 Let X(t) be a standard Poisson process (with λ = 1). Let Y (t) = X(t) − t
and c > 0 be a positive number. Then for any ε > 0 and for any n ∈ N , the following
inequality holds

P

(
1

n
|Y (cn)| > ε

)
≤ c

nε2
.

Proof:
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It follows easily that E(Y (t)) = 0 and that the variance D2(Y (t)) = t for all t. Let
us define Zn = Y (cn)/n. Then, E(Zn) = 0 and D2(Zn) = c/n for all n. Now applying
Chebyshev’s inequality to Zn we get the desired statement. �

Using this Proposition, an upper estimate for

yN(t) =
1

N
Ỹ1

 t∫
0

βI(s)
S(s)

N
ds

− 1

N
Ỹ2

 t∫
0

γI(s) ds

 (15)

can be derived as follows. From (14) we obtain

sup
t∈[0,T ]

|yN(t)| ≤ 1

N
Ỹ1(βNT ) +

1

N
Ỹ2(γNT ). (16)

Thus, if
sup
t∈[0,T ]

|yN(t)| > ε

then at least one of the inequalities

1

N
Ỹ1(βNT ) >

ε

2
or

1

N
Ỹ2(γNT ) >

ε

2

holds. Hence, P ( sup
t∈[0,T ]

|yN(t)| > ε) can be estimated by the probability of the larger. There-

fore, it can be obviously estimated by the sum of the two probabilities

P ( sup
t∈[0,T ]

|yN(t)| > ε) ≤ P (
1

N
Ỹ1(βNT ) >

ε

2
) + P (

1

N
Ỹ2(γNT ) >

ε

2
). (17)

Thus, using Proposition 1 we obtain

P ( sup
t∈[0,T ]

|yN(t)| > ε) ≤ 4(β + γ)T

Nε2
. (18)

Now the difference of iN(t) and i(t) can be estimated (the latter is defined by (6)).

Proposition 2 Let i(t) be the solution of (6) and let iN(t) be given by (12). Let us denote
by M the Lipschitz constant of F on [0, 1]. If iN(0) = i(0), then for all t ≥ 0 the following
inequality holds

|iN(t)− i(t)| ≤ |yN(t)|eMt.
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Proof:
The functions iN and i satisfy

iN(t) = iN(0) +

t∫
0

F (iN(s))ds+ yN(t)

and

i(t) = i(0) +

t∫
0

F (i(s))ds.

Subtracting the two equations, using the initial conditions and the Lipschitz constant of F
we obtain

|iN(t)− i(t)| ≤ |yn(t)|+
t∫

0

M |iN(s)− i(s)|ds.

Using Gronwall’s lemma the statement follows easily. �
Thus, if

sup
t∈[0,T ]

|iN(t)− i(t)| > δ

then
sup
t∈[0,T ]

|yN(t)| > δe−MT .

Hence,
P ( sup

t∈[0,T ]

|iN(t)− i(t)| > δ) ≤ P ( sup
t∈[0,T ]

|yN(t)| > δe−MT ).

Finally, we can use the estimate in (18) to get

P ( sup
t∈[0,T ]

|iN(t)− i(t)| > δ) ≤ 4(β + γ)T e2MT

Nδ2
,

and this proves Theorem 3.

5 ODE based proof of Theorem 1

In this Section, the main result of the paper is formulated and proved. This is an ODE-based
proof where the evolution equations of the moments of the distribution form a countable
system of ODEs. The proof only uses ODE techniques and a perturbation theorem for the
infinite system is presented.
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Theorem 4 If i(0) = [I](0)/N , then for any T > 0 there exist K > 0, such that

|i(t)− [I](t)

N
| ≤ K

N
, for all t ∈ [0, T ].

In fact, we have 0 ≤ i(t)− [I](t)
N
≤ K

N
for t ∈ [0, T ], that is i(t) is an upper approximation of

[I](t)/N .

The approximation (6) of equation (5) is based on the moment closure technique. Thus,
to keep an exact system, all higher order moments must be considered and this leads to a
countable (infinite) system of ODEs.

5.1 Moment equations and their approximations

Let us introduce the j-th moment of the probability distribution xk(t) (i.e. the probability
of finding states with k infectious nodes, where k = 0, 1, . . . , N)

yj(t) =
N∑
k=0

(
k

N

)j
xk(t). (19)

To derive differential equations for the moments, the following Proposition is given.

Proposition 3 Let rk (k = 0, 1, 2, . . .) be a sequence and let r(t) =
∑N

k=0 rkxk(t), where
xk(t) is given by (1). Then

ṙ(t) =
N∑
k=0

(ak(rk+1 − rk) + ck(rk−1 − rk))xk(t).

Proof: From (1) we obtain

ṙ(t) =
N∑
k=0

rkẋk(t) =
N∑
k=1

rkak−1xk−1(t)−
N∑
k=0

rkbkxk(t) +
N−1∑
k=0

rkck+1xk+1(t) =

N−1∑
k=0

rk+1akxk(t)−
N∑
k=0

rkbkxk(t) +
N∑
k=1

rk−1ckxk(t).

Using that aN = 0, c0 = 0 and bk = ak + ck we get

ṙ(t) =
N∑
k=0

(rk+1ak − rk(ak + ck) + rk−1ck)xk(t) =
N∑
k=0

(ak(rk+1 − rk) + ck(rk−1 − rk))xk(t).
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�
Before applying Proposition 3 with rk = (k/N)j, it is useful to define the following two

new expressions

Rk,j =
(k + 1)j − kj − jkj−1

N j−1
, Qk,j =

(k − 1)j − kj + jkj−1

N j−1
.

Combining these with Proposition 3 leads to

ẏj(t) =
N∑
k=0

(
ak
N

(
j
kj−1

N j−1
+Rk,j

)
+
ck
N

(
−j k

j−1

N j−1
+Qk,j

))
xk(t).

From (2) we get that
ak
N
− ck
N

= (β − γ)
k

N
− β k

2

N2
,

and therefore

ẏj(t) =
N∑
k=0

(
j(β − γ)

kj

N j
− jβ k

j+1

N j+1

)
xk(t) +

N∑
k=0

(ak
N
Rk,j +

ck
N
Qk,j

)
xk(t).

Hence

ẏj(t) = j(β − γ)yj(t)− jβyj+1(t) +
1

N
dj(t), (20)

where

dj(t) =
N∑
k=0

(akRk,j + ckQk,j)xk(t). (21)

Using the binomial theorem Rk,j and Qk,j can be expressed in terms of the powers of
k, hence dj can be expressed as dj(t) =

∑j
l=1 djlyl(t) with some coefficients djl. Therefore

system (20) is an infinite homogeneous linear system for the moments yj. This homogeneous
linear system is not written in the usual matrix form because it is useful to separate the
O( 1

N
) terms in order to handle the large N limit. The dj terms contain N , hence to use the

1/N → 0 limit it has to be shown that dj remains bounded as N goes to infinity. This is
proved in the next Proposition.

Proposition 4 For the functions dj the following estimates hold.

0 ≤ dj(t) ≤
j(j − 1)

2
(β + γ) for all t ≥ 0.
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Proof: Taylor’s theorem, with second degree remainder in Lagrange form, states that

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(ξ)
(x− x0)

2

2
,

where ξ is between x0 and x. This simple result can be used to find estimates for both Rk,j

and Qk,j. In particular, applying the above result when f(x) = xj, x = k + 1 and x0 = k
gives

Rk,j =
j(j − 1)

2

ξj−2

N j−1

with some ξ ∈ [k, k + 1]. Similarly, when x = k − 1 and x0 = k, we obtain

Qk,j =
j(j − 1)

2

ηj−2

N j−1

with some η ∈ [k, k + 1]. Hence, Rk,j and Qk,j are non-negative yielding that dj(t) ≥ 0. On
the other hand, using (2) and that ξ/N ≤ 1 and η/N ≤ 1 leads to the inequality given below

akRk,j + ckQk,j ≤
j(j − 1)

2

(ak
N

+
ck
N

)
≤ j(j − 1)

2
(β + γ).

Hence, the statement follows immediately from (21) and using that
∑N

k=0 xk(t) = 1. �
The exact equations for the moments (20) are now setup such that the limit of N →∞

can be considered. This leads to the following system,

żj(t) = j(β − γ)zj(t)− jβzj+1(t) (22)

with the same initial condition as for yj, that is zj(0) = kj0/N
j. It is worth noting that a

solution of system (22) can be obtained in the form zj = zj. Substituting this expression for
zj in (22) we get the following equation for z

ż = (β − γ)z − βz2

with initial condition z(0) = k0/N . This differential equation is the same as (6) for i.
Hence, the approximating equations for the moments (22) are not only more tractable but
they allow to recover the mean-field equations. However, y1(t) = [I](t)/N and z are not
identical. The former comes from the exact system, while z is based on the approximating
equations obtained from the exact system in the limit of N → ∞. Therefore, the relation
between the two needs to be formally established. The following two statements prove that
indeed z1 = z = i is the only uniformly bounded solution of equation (22) and that z1 is a
good approximation to y1 for t ∈ [0, T ] and for N large. The Lemma and Theorem given
below play a crucial role in completing the proof of Theorem 4. To increase the clarity and
transparency of the proof a diagram linking all propositions, lemmas and theorems is given
in Fig. 1.
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Lemma 3 System (22) subject to the initial condition zj(0) = kj0/N
j has at most one uni-

formly bounded solution, where uniform boundedness means that there exists M such that
|zj(t)| ≤M for all j. (This implies that z1(t) = i(t).)

Theorem 5 Let us assume that the solutions of systems (20) and (22) satisfy the same
initial condition yj(0) = kj0/N

j = zj(0). Then for any T > 0 there exist K > 0, such that

0 ≤ z1(t)− y1(t) ≤
K

N
for t ∈ [0, T ].

The rather technical proof of the Lemma is postponed to the Appendix.

5.2 Proof of Theorem 5

In this Subsection we prove Theorem 5. This together with with Lemma 3 yields our main
result formulated in Theorem 4. Let yj be given by (19), and let zj be the unique solution of
(22) subject to the initial condition zj(0) = kj0/N

j. Then the following Proposition verifies
the left inequality in the statement of Theorem 5.

Proposition 5 Under the above conditions we have that y1(t) ≤ z1(t) for all t ≥ 0.

Proof:
Given that the variance (y2 − y2

1) is non-negative it follows that y2
1(t) ≤ y2(t) for all t.

Since d1 = 0, the first equation of system (20) now reads as

ẏ1 = (β − γ)y1 − βy2.

Hence, ẏ1 ≤ (β−γ)y1−βy2
1. If there exists t2 > 0 such that y1(t2) > z1(t2), then there exists

t1 < t2, for which y1(t1) = z1(t1) and y1(t) > z1(t) for all t ∈ (t1, t2]. Let v(t) = y1(t)− z1(t)
for t ∈ [t1, t2]. Then using the function F (x) = (β − γ)x− βx2 gives

v̇ = ẏ1 − ż1 ≤ f(y1)− f(z1) ≤M(y1 − z1) = Mv

where M is the Lipschitz constant of F on the interval [0, 1]. Applying Gronwall’s lemma to
v we get v(t) ≤ 0 for all t ∈ [t1, t2], which is a contradiction.

�
In the next two Lemmas it will be proved that if j is large enough then zj ≤ yj. This

result will be heavily used in the proof of Lemma 6.

Lemma 4 There exist j0 ∈ N and δ > 0, such that

zj(t) ≤ yj(t), for all j ≥ j0, t ∈ [0, δ].

16



Proof:
In order to derive an upper estimate for zj we exploit the fact that z1 can be explicitly

determined from the first equation of system (22), ż1 = (β − γ)z1 − βz2
1 . Introducing

q = k0/N = z1(0) and α = β − γ gives

z1(t) =
αq

(α− βq) exp(−αt) + βq
.

To estimate this expression, two different cases need to be considered.
Case 1. If α− βq < 0 then z1 is decreasing.

In this case let us choose a number t′ > 0 and α′ < α such that

exp(−αt) ≤ 1− α′t, for all t ∈ [0, t′].

Then for all t ∈ [0, t′]

z1(t) ≤
αq

(α− βq)(1− α′t) + βq
=

q

1 + ct
,

where c = −α′(α− βq)/α > 0. Hence

zj(t) ≤
qj

(1 + ct)j
, for all t ∈ [0, t′]. (23)

A trivial lower estimate for yj is yj(t) ≥ (k0/N)jxk0(t). In order to get a lower estimate for
xk0(t) let us multiply (1) by ebkt and integrate from 0 to t. This gives

xk(t)e
bkt = xk(0) + ak−1

∫ t

0

xk−1(s)e
bksds+ ck+1

∫ t

0

xk+1(s)e
bksds. (24)

In the case when k = k0 and upon using the initial condition (xk0(0) = 1) it follows that
xk0(t) ≥ e−bk0

t for all t > 0. From e−bk0
t ≥ 1− bk0t it follows that

yj(t) ≥ qj(1− bk0t) for all t ≥ 0. (25)

Proposition 7, stated and proved in the Appendix, can now be applied when d = bk0 . For an
arbitrary t0 < 1/bk0 , the index j0 is chosen according to the Proposition. Let δ = min{t′, t0}.
Then for all j ≥ j0 and t ∈ [0, δ], from (23) and (25) it follows that

zj(t) ≤
qj

(1 + ct)j
≤ qj(1− bk0t) ≤ yj(t).

Case 2. If α− βq ≥ 0 then z1 is non-decreasing.
The proof is similar hence it is presented only briefly.
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The upper estimate for z1(t) in the interval [0, 1/α] is

zj(t) ≤
qj

(1− ct)j
, (26)

where c = α− βq.
The lower estimate for yj is based on the observation that yj(t) ≥ (k0/N)jxk0(t) + ((k0 +

1)/N)jxk0+1(t). Deriving lower estimates for xk0(t) and for xk0+1(t) it follows that there
exists j1 ∈ N and t′ > 0, such that

yj(t) ≥ qj(1 + djt), for all t ∈ [0, t′], j ≥ j1, (27)

where d ∈ (1, 1 + 1/Nq).
Then applying Proposition 8, which is stated and proved in the Appendix, we get the

desired statement. �
The next Proposition is needed in the proof of Lemma 5.

Proposition 6 For all k ∈ {0, 1, . . . , N} and for all t > 0 we have xk(t) > 0.

Proof:
In the case k = k0 and upon using the initial condition (xk0(0) = 1), from (24) it follows

that xk0(t) ≥ e−bk0
t > 0 for all t > 0. The statement for k > k0 can be proved by induction.

Assuming that xk−1(t) > 0, (24) gives

xk(t) ≥ ak−1e
−bkt

∫ t

0

xk−1(s)e
bksds > 0.

Using a similar argument the statement for k < k0 follows easily. �

Lemma 5 For any T > 0 there exists j1 ∈ N, such that

zj(t) ≤ yj(t), for all j ≥ j1, t ∈ [0, T ].

Proof:
Using that zj = ij, an upper bound for zj can be derived. It follows easily from (6) that

if i(0) > 1 − γ/β then i is a decreasing function. If the opposite inequality holds, then i
is an increasing function. Hence, q = max{k0/N, 1 − γ/β} is an upper bound for i, that is
i(t) ≤ q for all t ≥ 0. Therefore,

zj(t) ≤ qj for all t ≥ 0. (28)
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A lower bound on yj can now be derived. Let us start by choosing k ∈ {0, 1, . . . , N} such
that k/N > q holds and introduce j0 and δ according to Lemma 4. Let r be given by

r = min{xk(t) : t ∈ [δ, T ]} > 0.

The positivity of r is guaranteed by Proposition 6. Finally, let us choose j1 ≥ j0 in such a
way that r(k/N)j > qj for all j ≥ j1. Then for all t ∈ [δ, T ] the following inequality holds

yj(t) ≥
(
k

N

)j
xk(t) ≥

(
k

N

)j
r > qj ≥ zj(t).

On the other hand, from Lemma 4 it follows that zj(t) ≤ yj(t) for t ∈ [0, δ], since j ≥ j1 ≥ j0.
�

To formulate our final Lemma, a new variable is introduced together with its correspond-
ing evolution equation. For all j ∈ N and j ≥ 1, uj is defined by

uj = yj − zj.

Subtracting equations (20) and (22) gives

u̇j(t) = j(β − γ)uj(t)− jβuj+1(t) +
1

N
dj(t), (29)

where the initial condition is uj(0) = 0.
Our next and final Lemma gives bounds on um(t) and yields the basis of the proof of

Theorem 5.

Lemma 6 For any T > 0 there exist m ∈ N and Km > 0, such that

|um(t)| ≤ Km

N
for all t ∈ [0, T ].

Proof:
According to Lemma 5 we can find m ∈ N, such that um(t) ≥ 0 and um+1(t) ≥ 0

for all t ∈ [0, T ]. Now let us consider (29) with j = m. Multiplying this equation by
exp(−m(β − γ)t) and integrating from 0 to t gives,

um(t)e−m(β−γ)t = −βm
∫ t

0

um+1(s)e
−m(β−γ)sds+

1

N

∫ t

0

dm(s)e−m(β−γ)sds.

Combining that um+1(t) ≥ 0 with the upper bound for dm given in Proposition 4 results in
the following inequality,

0 ≤ um(t) ≤ 1

N

(m− 1)(β + γ)

2(β − γ)
em(β−γ)t.
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Thus, the statement holds with Km = (m−1)(β+γ)
2(β−γ) em(β−γ)T . �

Now we are in the position to complete the proof of Theorem 5.
Proof of Theorem 5:

Let us choose m and Km according to Lemma 6. We prove by induction that for any
j = 1, 2, . . . ,m− 1 there exists Kj, for which

|uj(t)| ≤
Kj

N
for all t ∈ [0, T ].

For j = 1, this together with Proposition 5 is exactly the statement of Theorem 5.
Let us assume that the statement is true for uj+1 and prove it for uj. Multiplying equation

(29) by exp(−j(β − γ)t) and integrating from 0 to t gives,

uj(t)e
−j(β−γ)t = −βj

∫ t

0

uj+1(s)e
−j(β−γ)sds+

1

N

∫ t

0

dj(s)e
−j(β−γ)sds.

Combining that |uj+1(t)| ≤ Kj+1/N with the upper bound for dj given in Proposition 4
results in the following inequality

|uj(t)| ≤ Kj/N with Kj =
2βKj+1 + (j − 1)(β + γ)

2(β − γ)
ej(β−γ)T .

�

6 Discussion

Understanding the link between exact stochastic and mean-field approximation models is
a challenging problem that arise often in applied research, and when formulated rigorously
can lead to difficult theoretical questions. Identifying the theoretical link between different
modelling paradigms, such as stochastic versus ODE- or PDE-based models, requires the
concurrent use of a number of different mathematical techniques. For example, Theorem
2 combines PDE elements with the discretisation Theorem for PDEs which is mainly used
in Numerical Analysis. At the same time, Theorem 3, uses Martingale (see equation (11))
and/or Semigroup theory. The concurrent use of different mathematical tools may limit the
applicability of these results or can make it non-trivial to check if the assumptions of the
theoretical results hold.

This paper makes two main contributions. First, it provides a unifying framework for
the existing proofs and discusses the exact way in which convergence of the exact to the
mean-field model holds. On the the other hand, we propose a novel proof which only relies
on ODE-techniques and thus increase the transparency of our results and makes it more
accessible to applied researchers. The main idea of our proof is the use of all moments of the
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distribution. This enabled us to keep the system exact and formulate convergence results to
an approximation model based on the simplest form of moment closures. Our results rely on
perturbation methods for infinite ODE systems and allowed us to theoretically identify the
link between the exact model and moment closure models often derived based on heuristic
arguments.

It is worth noting that the simplest method, the PDE-based approach, leads to the point-
wise convergence of the expected value, while the stochastic method yields the stronger
convergence in the sense that convergence also holds for the distribution. Our main result
proves the uniform convergence of the expected value which in some sense lies between
the two existing approaches. The technique presented in this paper could lead to further
developments on several different fronts. For example, the most natural extension could be
to generalise the link between exact stochastic and approximation models for networks other
than fully connected or to check the validity of existing moment closure techniques that so
far have only been tested via numerical simulations. At the same time the results presented
in the paper could also be extended for general dynamics and in the context of applied areas
other than ecology and epidemiology.

Acknowledgements
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7 Appendix

First, we prove Lemma 3. This together with Theorem 5 yields the proof of Theorem 4.
Proof of Lemma 3:

Since system (22) is linear and homogeneous it is enough to prove that the only solution
with zero initial condition is the constant zero function.

The system is autonomous hence it is enough to prove that the statement is true on a
time interval of length T , that is zj(t0) = 0 for all j implies zj is constant zero on [t0, t0 +T ].
This result can then be extended using induction to show that zj is constant zero on the
intervals [kT, (k + 1)T ] for all k ∈ N. Thus, it is sufficient to prove that there exists T > 0,
such that zj(0) = 0 for all j implies that zj is constant zero on [0, T ].

Multiplying equation (22) by exp(−j(β − γ)t), introducing vj(t) = zj(t) exp(−j(β − γ)t)
and denoting β − γ by α leads to the following differential equation for vj,

v̇j(t) = −jβvj+1(t)e
αt. (30)
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It is useful to show now that conditions vj(0) = 0 and vj(t) ≤ M for all j imply that there
exists T > 0, such that vj(t) = 0 on the time interval [0, T ].

Integrating (30) and using the initial condition vj(0) = 0 gives

vj(t) = −jβ
∫ t

0

vj+1(s)e
αsds. (31)

This equation can be used iteratively and v1 can be expressed in terms of vj+1 as

v1(t) = (−1)jj
βj

αj−1

∫ t

0

vj+1(s)e
αs
(
eαt − eαs

)j−1
ds. (32)

This statement can be proved by induction using (31). Let us now choose a number T such
that β(exp(αT )−1)/α < 1. Then, for all t ≤ T and for all s ∈ [0, t], the following inequality
holds, β(exp(αt) − exp(αs))/α < 1. The right hand side of (32) tends to zero when taking
the limit j →∞. Hence, v1(t) = 0 for all t ∈ [0, T ].

Using (30) with j = 1 gives that v2(t) = 0 also holds for all t ∈ [0, T ]. Similarly, by
induction it follows that vj(t) = 0 for all t ∈ [0, T ] and for all j ∈ N. This completes the
proof. �

Now we prove two Propositions that were used in the proof of Lemma 4.

Proposition 7 For any positive numbers c and d and for all t0 ∈ (0, 1/d) there exists j0 ∈ N
such that for all j ≥ j0 and t ∈ [0, t0] the inequality (1 + ct)−j ≤ 1− dt holds.

Proof:
Let f(t) = 1/(1 − dt) and g(t) = (1 + ct)j. We will prove that there exists j0 ∈ N such

that for all j ≥ j0 and t ∈ [0, t0] the inequality f(t) ≤ g(t) holds. Since f(0) = 1 = g(0), it
is enough to prove that f ′(t) ≤ g′(t) for all t ∈ [0, t0]. We have that

f ′(t) =
d

(1− dt)2
≤ d

(1− dt0)2

and
g′(t) = jc(1 + ct)j−1 ≥ jc.

Hence, choosing a number j0 to satisfy

d

(1− dt0)2
≤ j0c

it follows that for all j ≥ j0 and t ∈ [0, t0]

f ′(t) ≤ d

(1− dt0)2
≤ j0c ≤ jc ≤ g′(t).

�

22



Proposition 8 Let c > 0 and d > 1. Then for all t0 ∈ (0, (d − 1)/dc) there exists j0 ∈ N
such that for all j ≥ j0 and t ∈ [0, t0] the inequality (1− ct)−j ≤ 1 + djt holds.

Proof:
Let f(t) = (1 − ct)−j and g(t) = 1 + djt. We will prove that there exists j0 ∈ N such

that for all j ≥ j0 and t ∈ [0, t0] the inequality f(t) ≤ g(t) holds. Since f(0) = 1 = g(0), it
is enough to prove that f ′(t) ≤ g′(t) for all t ∈ [0, t0]. We have that

f ′(t) = jc(1− ct)−j−1 ≤ jc(1− ct0)−j−1

and
g′(t) = dj.

The assumption t0 ∈ (0, (d − 1)/dc) implies d(1 − ct0) > 1, hence there exists a number j0
for which

j
c

1− ct0
≤ dj(1− ct0)j for all j ≥ j0.

Thus we get that for all j ≥ j0 and t ∈ [0, t0]

f ′(t) ≤ jc

(1− ct0)j+1
≤ dj = g′(t)

holds. �
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Figure 1: The flow of the proof of Theorem 4.
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