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Abstract12

For many diseases (e.g., sexually transmitted infections, STIs), most individuals13

are aware of the potential risks of becoming infected, but choose not to take action14

(‘respond’) despite the information that aims to raise awareness and to increases the15

responsiveness or alertness of the population. We propose a simple mathematical model16

that accounts for the diffusion of health information disseminated as a result of the17

presence of a disease and an ‘active’ host population that can respond to it by taking18

measures to avoid infection or if infected by seeking treatment early. In this model, we19

assume that the whole population is potentially aware of the risk but only a certain20

proportion chooses to respond appropriately by trying to limit their probability of21

becoming infectious or seeking treatment early. The model also incorporates a level of22

responsiveness that decays over time. We show that if the dissemination of information23

is fast enough, infection can be eradicated. When this is not possible, information24

transmission has an important effect in reducing the prevalence of the infection. We25

derive the full characterisation of the global behaviour of the model, and we show that26

the parameter space can be divided into three parts according to the global attractor of27

the system which is one of the two disease-free steady states or the endemic equilibrium.28

Keywords: differential equations, compartmental models, disease transmission, epidemic,29

information spread.30
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1 Introduction31

Many compartmental models of disease transmission assume a ‘passive’ population that will32

not ‘respond’ (change its behaviour) following an infectious disease outbreak or an ongoing33

endemic infection [2, 7]. For many diseases (e.g., sexually transmitted infections (STIs),34

SARS, Pandemic Influenza, Childood diseases) this is rarely the case since through targeted35

campaigns or simple diffusion of news through various media (e.g., TV, newspaper, social36

networking sites) and individual to individual contact, the population can be alerted to the37

presence of a disease that is spreading through the population. This will usually result in38

individuals taking a range of measures to lower their probability of becoming infected. These39

measures, depending on the disease, can range from the use of face masks, vaccination, taking40

antiviral drugs [8], condoms to individuals choosing to limit their number of contact with41

others, or in particular avoid contact with persons known to be infectious [10, 17]. In the42

case when already infected, as a results of the information, some individuals will seek early43

treatment.44

Here, in the context of STIs, we propose a simple compartmental model that describes45

such an ‘active’ population. For many infectious diseases, prevention is desirable, but when46

individuals become infectious it is vital they seek treatment early. By the time that most47

people become sexually active it is likely that many will be aware of the potential risk of48

becoming infected and of the measures that can be taken to avoid becoming infected. Hence,49

the most important factor is the willingness or responsiveness of individuals to act upon50

the information that is made available. For example, there is evidence that mass media51

campaigns resulted in less than 1% of young adults taking a Chlamydia test[1, 14, 16];52

although there may be an increase in testing during and shortly after campaigns. However,53

these data reflect only testing behaviour following a media campaign and cannot assess any54

possible change in sexual beaviour and consequently in risk of acquiring infection. To reflect55

this in the model, we differentiate between individuals based on the willingness to respond56

to the information generated by the presence of the disease. Individuals that are not yet57

infected and are willing to respond can take basic measures to reduce their probability of58

becoming infected. If infected, responsive individuals are likely to seek treatment early and59

thus have a shorter infectious period compared to infected individuals that remain passive.60

The willingness to respond is likely to degrade with time either due to susceptible individuals61

becoming less cautious with time or as a result of limited diffusion of information when62

prevalence is low [1, 16]. These are important factors that are incorporated in the model.63

Simple compartmental models have been previously used to describe the influence of the64

information and information-related delays on vaccination campaigns [3]. Specifically, for65

STIs, Chen [4] developed a simple model to capture the interplay between the quality of66

information, the prevalence of the infection and disease dynamics. In a recent paper, Funk67

et al. [9] discussed the spread of awareness about the disease and its effect on epidemic68

outbreaks. They investigated an SIR type compartmental model and compared results69

to findings based on individual-based simulations. In the compartmental model that they70
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propose, the spread of awareness has no effect on the epidemic outbreak threshold R0, but71

decreases the proportion of infected individuals. When considering disease and awareness72

spread on theoretical network models, they show that if the disease transmission is not too73

fast the transmission of awareness can halt the outbreak. The model that we propose is74

motivated by and analysed in the context of STIs and uses assumptions that are relevant in75

this context. In the case of STIs, most individuals are aware of the risk, but only few respond76

accordingly. Most campaigns are aimed at raising the responsiveness of the population to77

a level where a significant number of individuals will take measures to avoid infection or78

seek treatment early [1, 14, 15, 16]. The present model apart from capturing individual to79

individual transmission of information also accounts for a population wide transmission and80

we discuss the overall implications of the dissemination of information for disease outbreak81

threshold, disease dynamics and long-term behaviour of the system.82

2 Model83

We extend the simple SIS model to account for the treatment class that is a common feature84

for many STIs. To account for non-responsive and responsive individuals, the population85

is divided into five compartments as follows: susceptible non-responsive (Snr), susceptible86

responsive (Sr), infectious non-responsive (Inr), infectious responsive (Ir) and treatment class87

(T ). This model captures basic features of STIs (e.g., Chlamydia and Gonorrhea) without88

considering heterogeneity in the number of contacts. The equations corresponding to the89

transitions between the various classes are (see Fig. 1 for a diagram of possible transitions)90

dSnr

dt
= −βnr(Inr + Ir)

Snr

N
− αsfs(Snr; Sr, Ir, T )− δsgs(Inr, Ir)Snr

+ hs(Inr, Ir)Sr + prT, (1)

dSr

dt
= −βr(Inr + Ir)

Sr

N
+ αsfs(Snr; Sr, Ir, T ) + δsgs(Inr, Ir)Snr

− hs(Inr, Ir)Sr + (1− p)rT, (2)

dInr

dt
= βnr(Inr + Ir)

Snr

N
− αifi(Inr; Sr, Ir, T )− δigi(Inr, Ir)Inr

− γnrInr + hi(Inr, Ir)Ir, (3)

dIr

dt
= βr(Inr + Ir)

Sr

N
+ αifi(Inr; Sr, Ir, T ) + δigi(Inr, Ir)Inr

− γrIr − hi(Inr, Ir)Ir, (4)

dT

dt
= γnrInr + γrIr − rT, (5)

where (Snr +Sr + Inr + Ir +T )(t) = N for all t ≥ 0 and N is the population size. The model91

given above, considers two different means of information dissemination: (i) information92
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dissemination via direct contact between individuals given by fs and fi (e.g. mass-action or93

some form of nonlinear incidence), and (ii) population wide dissemination of disease related94

information given by gs and gi. As a result of either of these, non-responsive susceptible95

and infectious individuals move to the responsive class. In general, gs and gi depend on96

the level of infection prevalence with high prevalence of infection enhancing information97

transmission (e.g., TV, newspaper, social networking sites) which in turn results in a higher98

rate of transition from the non-responsive to the responsive class. However, information99

that covers the same topic repeatedly will loose its value over time. This can be captured100

by including a saturation effect in gs and gi for increasing levels of infection prevalence. The101

value of the information degrades in time and many individuals that are aware of the disease102

and are prepared to respond are going to become less willing to do so. This is captured by hs103

and hi which represent the rates at which responsive individuals move to the non-responsive104

class. These rates can depend on time and can increase when the level of infection prevalence105

is low (i.e., low levels of prevalence can make individuals even less responsive) and decrease106

when prevalence increases.107

Responsive individuals are less likely to be infected (βnr > βr) and seek treatment faster108

(γr > γnr) compared to non-responsive individuals. Disease and information is likely to be109

transmitted through contacts that are non-overlapping and hence information transmission110

is possible from any responsive individual (i.e., Sr, Ir and T ).111

2.1 Choice of model112

2.1.1 Contact-based transmission of information113

For STIs contact between individuals is best characterised by frequency dependent contact114

(i.e., mass action). Thus, upon assuming that the disease and information spread on different115

routes, the natural choice for fs and fi is given by116

fs(Snr; Sr, Ir, T ) = fi(Inr; Sr, Ir, T ) = f(X; Sr, Ir, T ) =
X(Sr + Ir + T )

N
. (6)

This accounts for the spread of information triggered by the disease from individuals that117

are aware and responsive (i.e., Sr, Ir and T ) to those that are non-responsive (i.e., Snr and118

Inr).119

120

2.1.2 Population wide transmission of information121

The rate of population wide transmission of information is assumed to depend on the disease122

prevalence. This is based on the assumption that more cases will generate an increased123

volume of information and more efficient diffusion of information. However, this will be124

limited and can saturate for higher prevalence when information is likely to have a smaller125
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impact with time. This is similar to the case where the bilinear incidence is replaced by a126

non-linear function to capture the saturation effect as the number of infectious people in the127

population increases [6, 11, 13]. There are different ways to account for these aspects and128

we propose a relatively simple form where gs and gi are given by129

gs(Inr, Ir) = gi(Inr, Ir) = g(Inr, Ir) =
(Inr + Ir)

n

K + (Inr + Ir)n
, (7)

where n = 1, 2, . . . . For small n, these functions have a quick initial growth compared to130

the case of large n. However, for large n, the saturation level is reached quicker. In the131

limit of large n, these function become step like with sudden transition from small values to132

close to saturation. By choosing n = 1 and n = 2, the function above will be equivalent to133

Michaelis-Menten and Holling-type II function, respectively.134

135

2.1.3 Decaying value of information136

The value of information is likely to decay with time. For example, individuals that respon-137

sive and remain susceptible for a certain amount of time are likely to become less cautious138

with time. Moreover, low levels of disease prevalence in the population might increase the139

rate at which individuals that are responsive become less cautious. For high levels of preva-140

lence this is likely to decrease and individuals will remain more cautious for longer. Below141

we give two different possible choices for hs and hi,142

h1
b(Inr, Ir) = db, h2

b(Inr, Ir) =
Db

Mb + (Inr + Ir)
for b ∈ {s, i}. (8)

In the first case, h is independent of the prevalence level and in the second case, h depends143

on the proportion of infectious individual in the population.144

3 Baseline model and its analysis145

All dependent variables are non-dimensionalised by N . For n = 1, h = h1 and upon using146

snr = Snr/N , sr = Sr/N , inr = Inr/N , ir = Ir/N , τ = T/N , k = K/N we obtain147

dsnr

dt
= −βnr(inr + ir)snr − αs(sr + ir + τ)snr − δs(inr + ir)

k + (inr + ir)
snr + dssr + prτ, (9)

dsr

dt
= −βr(inr + ir)sr + αs(sr + ir + τ)snr +

δs(inr + ir)

k + (inr + ir)
snr − dssr + (1− p)rτ, (10)

dinr

dt
= βnr(inr + ir)snr − αi(sr + ir + τ)inr − δi(inr + ir)

k + (inr + ir)
inr − γnrinr + diir, (11)
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dir
dt

= βr(inr + ir)sr + αi(sr + ir + τ)inr +
δi(inr + ir)

k + (inr + ir)
inr − γrir − diir, (12)

dτ

dt
= γnrinr + γrir − rτ. (13)

The goal of our investigation is to reveal the dynamic behaviour of the system. In the148

first Subsection we determine the two disease-free steady states and their stability. In the149

next Subsection we will show how the endemic steady state can be determined numerically.150

We will give numerical evidence that the endemic steady state (if it exists) is unique and151

it is globally asymptotically stable in the positive orthant, that is all trajectories starting152

from a positive initial condition tend to this point as time tends to infinity. To illustrate the153

behaviour of the model, based on previous studies of the spread and control of Chlamydia154

[1, 16], some model parameters are fixed. In the case of Chlamydia, the average infectious155

period for individuals that are unaware and do not seek treatment early is found to be156

in the region of 6 months (i.e., γnr = 1/(26 weeks)). For individuals that seek treatment157

early, mainly due to being aware, the average infectious period is around 3 months (i.e.,158

γr = 1/(13 weeks)). The time spent in treatment on average is around one week giving an159

estimate of r = 1/(1 week). To show the qualitative behaviour of the model, we numerically160

integrated Eqs. (9)-(13) and varied the rate at which infection (βnr) and information (αs and161

αi) is transmitted. This preliminary investigation reveals three different model outcomes:162

trivial and non-trivial disease-free steady states and an endemic equilibrium (see Fig. 2). In163

the sections below, the stability of these steady state is analysed in detail.164

3.1 Disease-free steady states, stability analysis and R0165

There are two disease-free steady states (DFSSs). The trivial DFSS is sstriv = (snr, sr, inr, ir, t)166

= (1, 0, 0, 0, 0). The second DFSS can be obtained by setting inr, ir and τ to zero and de-167

termining the values of snr and sr such that Eqs. (9-10) are at equilibrium (i.e., dsnr/dt =168

dsr/dt = 0). Provided that, αs > ds, the second DFSS is given by169

dfssnon−triv = (snr, si, inr, ii, t) =
(
1− s0 =

ds

αs

, s0 =
αs − ds

αs

, 0, 0, 0
)
. (14)

There is also an endemic steady state (i.e., non-zero prevalence of infection) with its exis-170

tence and uniqueness discussed in the following subsection.171

172

3.1.1 Linear stability analysis173

The linear stability analysis can be carried out easier when Eqs. (9)-(13) are considered as a
four variable system (Eqs. (9)-(12)) with τ = 1−snr−si− inr− ii. Then the two disease-free
steady states can be written in the form (1− s0, s0, 0, 0), where s0 = 0 for the trivial DFSS
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and s0 = αs−ds

αs
for the non-trivial DFSS. Then the 4 × 4 Jacobian at the two disease-free

steady states (1− s0, s0, 0, 0) takes the form

J =

(
L N
0 M

)

with

L =

(
αs(1− 2s0)− pr ds − pr

αs(2s0 − 1) + pr − r −ds + pr − r

)

M =

(
βnr(1− s0)− αis0 − γnr βnr(1− s0) + di

βrs0 + αis0 βrs0 − γr − di

)

The block form of the Jacobian J yields that its eigenvalues are the eigenvalues of L and M174

(the matrix N does not affect the eigenvalues). The eigenvalues of L are denoted by λ1, λ2175

and those of M are denoted by λ3, λ4. For the trivial DFSS (when s0 = 0) the eigenvalues176

are177

λ1 = −r, λ2 = αs − ds, λ3 = βnr − γnr, λ4 = −γr − di. (15)

Therefore the trivial DFSS is stable if and only if αs < ds and βnr < γnr. For the non-trivial178

DFSS (when s0 = αs−ds

αs
) the eigenvalues are179

λ1 = −r, λ2 = ds − αs, λ3,4 =
1

2
(TrM ±

√
(TrM)2 − 4 det M). (16)

It is easy to show that Reλ3,4 < 0 if and only if TrM < 0 and det M > 0. Using that

det M = −βnr(1− s0)(γr + di + αis0)− βrs0(γnr + di + αis0) + αis0γr + γnrγr + γnrdi,

one can easily prove that det M > 0 implies TrM < 0. Therefore the non-trivial DFSS is180

stable if and only if ds < αs and det M > 0. Summarising the above results, we have proved181

the following about the local stability of the DFSSs.182

Proposition 1 The system given by Eqs. (9)-(13) can have two disease-free steady states:183

a trivial DFSS (1, 0, 0, 0, 0) and in the case αs > ds a non-trivial DFSS (1 − s0, s0, 0, 0, 0),184

where s0 = αs−ds

αs
.185

1. The trivial DFSS is locally stable if and only if αs < ds and βnr < γnr.186

2. The non-trivial DFSS is locally stable if and only if ds < αs and187

−βnr(1− s0)(γr + di + αis0)− βrs0(γnr + di + αis0) + αis0γr + γnrγr + γnrdi > 0. (17)
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3.1.2 Basic reproduction number188

The local stability of the DFSSs can be expressed in terms of the basic reproduction number189

R0. First consider the trivial DFSS and its stability. To determine R0 the next generation190

matrix approach proposed by van den Driessche and Watmough [18] is used. The rate191

of appearance of new infections F and the rate of transfer of individuals out of the three192

compartments V are given by193

F =




sr inr ir
sr αs

δs

k
αs + δs

k

inr 0 βnr βnr

ir 0 0 0


, V =




sr inr ir
sr ds 0 0
inr 0 γnr −di

ir 0 0 γr + di


. (18)

The basic reproduction number R0 is then defined as the leading eigenvalue of the next194

generation matrix FV −1. Solving the resulting equation, two eigenvalues are obtained and195

hence the basic reproduction number is given by196

R0 = max
(
Rr

0 =
αs

ds

, Ri
0 =

βnr

γnr

)
. (19)

The non-trivial disease-free steady state can be perturbed through the sr and/or inr class.197

If the initial seeding is in the sr class alone, the disease cannot spread independently of the198

value of Ri
0. If Rr

0 < 1, the trivial disease-free steady state is stable. However, if Rr
0 > 1 more199

individuals become responsive and the system will converge to the non-trivial DFSS. Rr
0 is200

equivalent to the basic reproduction number and represents the number of new responsive201

individuals to whom information about the disease has been transmitted from a responsive202

individual. Thus the trivial DFSS is locally stable if and only if Rr
0 < 1 and Ri

0 < 1.203

Let us consider now the non-trivial DFSS that represents the case when the responsive204

individuals have reached an ‘endemic’ level and the spread of infection is not possible. The205

conditions of local stability in Proposition 1 can be conveniently rearranged to give206

Rr =
αs

ds

≥ 1 (20)

Ri =
βnr(1− s0)(γr + di + αis0) + βrs0(γnr + di + αis0)

αis0γr + γnr(γr + di)
≤ 1. (21)

where s0 = αs−ds

αs
. The first condition is the obvious requirement that Rr

0 = αs

ds
> 1. This207

means that the spread of responsiveness has to be fast enough in order to reach the non-208

trivial DFSS. An initial small proportion of infectious individuals can kick start the spread209

of responsiveness. If neither of the two conditions above (Eqs. (20) & (21)) are fulfilled the210

non-trivial DFSS is not stable and the system will tend to the trivial DFSS (1, 0, 0, 0, 0).211

The present system can be considered as a multi-strain system where individuals can212

become infected by the information (i.e., becoming responsive) and/or by the disease. This213
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is equivalent to considering the spread of information (i.e., first strain) and the spread of the214

disease (second strain) as two competing strains [5]. The second strain can infect individuals215

already infected with the first strain. Hence, ‘superinfection’ is possible since disease can be216

transmitted to individuals that are already aware. Considering the stability of the non-trivial217

DFSS is equivalent to establishing whether inr and ir can invade the population when sr is218

already at equilibrium. We show that upon perturbing the trivial DFSS the system will tend219

to either the non-trivial DFSS or an endemic equilibrium. The condition in Eq. (21) can be220

rewritten in terms of Rr
0 and Ri

0 to give221

Ri
0 − 1 ≤ A(Rr

0 − 1), with A =
(γr − βr)(αi + γnr) + B(γnr − βr)

γnr(αi + γr + B)
, B = di − αi

Rr
0

. (22)

Therefore we can reformulate Proposition 1 in terms of Rr
0 and Ri

0.222

Proposition 2 1. The trivial DFSS is locally stable if and only if Rr
0 < 1 and Ri

0 < 1.223

2. The non-trivial DFSS is locally stable if and only if Rr
0 > 1 and Ri

0 − 1 < A(Rr
0 − 1)224

(A given in Eq. (22)).225

In Fig. 3a the local stability regions of the disease-free and endemic steady states are226

illustrated for a particular set of parameters. In the case αi = αs, di = ds (a reasonable227

assumption from the biological point of view) we have B = 0, hence A does not contain Rr
0228

and Ri
0 − 1 ≤ A(Rr

0 − 1) gives a linear relation between Ri
0 and Rr

0. In Fig. 3b the local229

stability regions are shown for the case αi = αs, di = ds. Numerical studies show that in230

the case when both DFSSs are unstable there exists a unique endemic equilibrium and this231

is discussed in the next Subsection.232

3.2 Existence and uniqueness of the endemic steady state233

In this Subsection our aim is to show numerical evidence that in the case Ri
0 > 1 and234

Ri
0 − 1 > A(Rr

0 − 1) there exists a unique endemic steady state. Numerical investigations235

and partial analytical results, that will be presented later, show that when conditions in236

Proposition 2 hold, the two DFSSs are also globally stable. The analysis starts by reducing237

the five variable system given by Eqs. (9)-(13) (with zeros in the l.h.s.) to two equations with238

two unknowns. Then the endemic equilibrium can be obtained as the intersection point of239

two curves (in the plane of the two unknowns). We will show numerically that the two curves240

have a unique intersection point for different values of the parameters. In this Subsection241

we assume that δs = δi = 0 to make the calculations easier.242

The existence and uniqueness of the endemic equilibrium can be investigated via intro-
ducing the following new variables

i = inr + ir and n = snr + inr,
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which denote total infection prevalence and the proportion of non-responsive individuals,243

respectively. The system based on Eqs. (9)-(13) has four independent variables since ṡnr +244

i̇nr + ṡa + i̇a + τ̇ = 0 implies that the sum of these variables is constant and equal to 1.245

Instead of the original variables the following new variables τ, i, n and inr are used. The246

original variables can be expressed easily using the new ones247

snr = n− inr, sr = 1− τ − i− n + inr, ir = i− inr. (23)

Hence, in terms of the new variables the system can rewritten to give248

τ̇ = γri− γinr − rτ, (24)

i̇ = i (β(n− inr) + βa(1− τ − i))− γri + γinr, (25)

ṅ = (d− αn)(1− n)− γnrinr + (pr − d)τ, (26)

i̇nr = βnri(n− inr) + αninr − (α + γnr + d)inr + di, (27)

where β = βnr − βr and γ = γr − γnr. For simplicity we assume that αs = αi := α and249

ds = di := d. We note that this is not a restriction, and all our calculations can be carried250

out without this assumption.251

In order to determine the positive steady state, the system given by Eqs. (24)-(27) is252

reduced to two equations with two unknowns. Upon expressing one of the unknowns from253

these equations, a graphical illustration of the two curves determined by the two equations254

is possible. A systematic numerical study for different parameter values allows to show255

that these two curves have a unique intersection point that determines the unique endemic256

equilibrium. In order to carry out this analysis an additional new variable is introduced257

x =
inr

i
(28)

and the left hand side of Eqs. (24)-(27) is set to zero to consider all possible steady states.258

From Eq. (24) we obtain259

τ = i
(γr

r
− x

γ

r

)
. (29)

Substituting this expression for τ in Eq. (25) we obtain260

i = r
βr − γr + βn + γx

βr(γr + r) + x(βr − βrγ)
. (30)

Similarly, upon substituting τ in Eq. (26) with the expression given in Eq. (29), we get

(d− αn)(1− n) + i

(
(p− d

r
)(γr − xγ)− γnrx

)
= 0.

Finally, by substituting i in the above equation, with the expression given in Eq. (30), the
following equation is obtained

(d−αn)(1−n) (βr(γr + r) + x(βr − βrγ))+(βr−γr+βn+γx) ((pr − d)(γr − xγ)− rγnrx) = 0.
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This gives a quadratic equation in x261

A0 + A1x + A2x
2 = 0 (31)

where262

A0 = (d− αn)(1− n)βr(γr + r) + (βr − γr + βn)(pr − d)γr,

A1 = (d− αn)(1− n)(βr − βrγ)− (βr − γr + βn) ((pr − d)γ + rγnr) + γ(pr − d)γr,

A2 = −γ ((pr − d)γ + rγnr) .

Using that inr = ix and upon dividing Eq. (27) by i, we obtain

βnr(n− ix) + αnx− (α + γnr + d)x + d = 0.

Now substituting i using the expression given in Eq. (30), the equation above yields

βnrn + αnx− (α + γnr + d)x + d− βnrxr
βr − γr + βn + γx

βr(γr + r) + x(βr − βrγ)
= 0.

The equation above is a linear equation in terms of n263

B0 + B1n = 0, (32)

where264

B0 = (d− (α + γnr + d)x)(βr(γr + r) + x(βr − βrγ))− βnrxr(βr − γr + γx),

B1 = (βnr + αx)(βr(γr + r) + x(βr − βrγ))− βnrxrβ.

Thus the endemic equilibrium can be obtained as follows. First, the curves given by Eqs.
(31) & (32) have to be plotted in terms of the two independent variables (x, n). Their point
of intersection defines the x and n coordinate of the endemic equilibrium. Then Eqs. (28),
(29) & (30) will yield the other coordinates of the equilibrium of the system given by Eqs.
(24)-(27). Finally, Eq. (23) gives the coordinates of the endemic equilibrium in terms of
the original variables. Since all coordinates of the endemic equilibrium have to be positive
(i.e., snr, sr, inr, ir, τ > 0), inequalities for the new variables can be obtained. Using the
transformation formulas given in Eq. (23), the following conditions for the new variables
are obtained. From inr > 0 follows that i > 0 and x > 0. Similarly, snr > 0 yields n > ix.
From ir > 0 immediately follows that i > 0 and x < 1. These conditions, through Eq. (29),
automatically imply that τ > 0 since γr > γ. Finally, sr > 0 yields 1− τ − n− i(1− x) > 0
and upon using Eq. (29) it follows that

i <
r(1− n)

γr + r − x(γ + r)
.
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Thus the following conditions for the new variables ensure the positivity of the endemic265

equilibrium266

0 < x < 1, 0 < i <
n

x
, i <

r(1− n)

γr + r − x(γ + r)
. (33)

Using the expression for i given in Eq. (30), conditions in Eq. (33) can be expressed in267

terms of x and n as follows268

0 < x < 1 (A), βr − γr + βn + γx > 0 (B),
rx(βr − γr + γx)

βr(γr + r)− xγβr

< n (C), (34)

n <
γr(γr + r) + x((βnr − γnr)r − 2γ(γr + r)) + x2γ(γ + r)

βnr(γr + r)− x(βr + βrγ)
. (35)

In Fig. 4, for a particular set of parameters, the uniqueness of the endemic equilibrium is269

illustrated numerically. The endemic steady state can be computed based on the intersection270

point of the continuous red and blue lines, provided that this point lies in the appropriate271

area defined by positivity constraints given in Eqs. (34) & (35). Fig. 4 illustrates, that272

when close to the boundaries delimiting the stability of the different steady states (see273

Fig. 3), the endemic equilibrium approaches the trivial DFSS or the non-trivial DFSS.274

When Rr
0 = 0.5, the endemic equilibrium approaches (1, 0, 0, 0, 0) as Ri

0 approaches one from275

above. In the case of Rr
0 = 2, the endemic equilibrium approaches (d/α, (α−d)/α), 0, 0, 0) =276

(0.5, 0.5, 0, 0, 0) as Ri
0 decreases to satisfy the condition given by Eq. (22).277

3.3 Global dynamical behaviour of the system278

In Proposition 2, we determined the local stability of the disease-free steady states. Nu-279

merical investigations show that under the assumptions given in the Proposition, the steady280

states are not only locally but also globally stable, that is all trajectories starting from posi-281

tive initial condition tend to the given equilibrium. We can prove global stability analytically282

only in the case Ri
0 < 1.283

Proposition 3 1. If Ri
0 < 1 and Rr

0 < 1, then the trivial disease free steady state284

(1, 0, 0, 0, 0) is globally asymptotically stable in the positive orthant.285

2. If Ri
0 < 1 and Rr

0 > 1, then the non-trivial disease free steady state (ds/αs, 1 −286

ds/αs, 0, 0, 0) is globally asymptotically stable in the positive orthant.287

PROOF. Let us add Eqs. (11) & (12) and introduce i = inr + ii. In the case of Ri
0 < 1,

it follows that i̇ < 0, hence, i tends to zero as t → ∞. Using Eq. (13), implies that also τ
tends to zero. Hence, the differential equation for snr, in the limit t →∞, will give

ṡnr = (ds − αssnr)(1− snr).
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This equation can have two equilibria 1 and ds/αs. If Rr
0 < 1, then the only biologically288

relevant equilibrium is snr = 1 and it is globally stable. If Rr
0 > 1, then there are two289

equilibria, with snr = 1 being unstable, while sna = ds/αs is globally stable. 2290

291

The above proof does not work in the case Ri
0 > 1; however, we have numerical evidence for292

the following full characterisation of the global behaviour of the system, see Fig. 3.293

1. If Ri
0 < 1 and Rr

0 < 1, then the trivial disease free steady state (1, 0, 0, 0, 0) is globally294

asymptotically stable in the positive orthant.295

2. If Rr
0 > 1 and Ri

0 − 1 < A(Rr
0 − 1) (A is given in Eq. (22)), then the non-trivial296

disease free steady state (ds/αs, 1 − ds/αs, 0, 0, 0) is globally asymptotically stable in297

the positive orthant.298

3. If Ri
0 > 1 and Ri

0− 1 > A(Rr
0− 1) then there exists a unique endemic steady state and299

it is globally asymptotically stable in the positive orthant.300

In the special case of βnr = βr and γnr = γr, all the above statements can be proved301

analytically. It is important to note that this case corresponds to considering the limit of302

βr

βnr
→ 1 and γnr

γr
→ 1 in the full system. Hence, when close to this regime, the full system303

can be viewed as a perturbed version of the special case with results from the special case304

expected to hold for the full system. When βnr = βr and γnr = γr, Ri
0 − 1 < A(Rr

0 − 1) is305

equivalent to Ri
0 < 1. Hence we have the following Theorem,306

Theorem 1 If βnr = βr and γnr = γr, three different cases follow:307

1. If Ri
0 ≤ 1 and Rr

0 < 1, then the trivial disease free steady state (1, 0, 0, 0, 0) is globally308

asymptotically stable in the positive orthant.309

2. If Ri
0 ≤ 1 and Rr

0 > 1, then there exists a non-trivial disease-free steady state (ds/αs, 1−310

ds/αs, 0, 0, 0) that is is globally asymptotically stable in the positive orthant.311

3. If Ri
0 > 1, then there exists a unique endemic steady state that is globally asymptotically312

stable in the positive orthant.313

The proof of Theorem 1 is given in Appendix 1.314

4 Discussion315

The spread and persistence of STIs is a result of the complex interaction between the be-316

haviour of the individuals, the characteristics of the disease and various control programmes317

that are aimed at limiting disease transmission or bringing prevalence of infection to as low318



15

levels as possible. While more and more data describing the attitudes and lifestyle of indi-319

viduals is becoming available, it is challenging to capture the interaction of these with the320

transmission dynamics. In this simple model, we relaxed the assumption of a ‘passive’ popu-321

lation that will not react to the presence of the disease and we also accounted for the spread322

of the information about the diseases. The assumption of the model is that individuals who323

choose to respond to information triggered by the presence of the disease will lower their324

probability of becoming infected through behavioural change or seek treatment early. The325

spread of responsiveness competes with the spread of infection and contributes to reducing326

the number of individuals becoming infected.327

We derived the characterisation of the global behaviour of the system using a mixture328

of analytical and numerical methods and investigated to what extent can the spread of329

information stop the spread of the infection. For the most general case, the existence and330

uniqueness of the endemic state is difficult to derive and so is the proof of the global stability331

results of the disease-free steady states. However, numerical investigations and complete332

analytical results, for particular choice of parameters, provide a good description of the333

system. Given the negative feedback between the rate of information transmission at the334

population level and infection prevalence, the existence of a Hopf bifurcation is possible and335

in future work this will be investigated further.336

The proposed model incorporates two ways in which information or responsiveness can337

spread and it is important to separately consider the effect of these. The transmission of in-338

formation due to direct contact between individuals, under appropriate conditions, changes339

the endemic threshold and can prevent the spread of infection. However, the population wide340

transmission does not affect the endemic threshold (see Proposition 1, 2 and 3 and Theorem341

1), but leads to smaller levels of infection prevalence at the endemic equilibrium (Fig. 5).342

While the effect of the information transmission, due to direct contact between individuals,343

is clear from the analysis, the precise implications of the population wide transmission (δs,344

δi and k) and the proportion of treated individuals that return to the non-responsive group345

(p) are less obvious. These parameters do not play a role in determining the stability of346

the steady states, but have an impact on the level prevalence. Fig. 5 shows that the preva-347

lence decreases considerably faster when δ = δs = δi increases compared to the case when348

p decreases. Therefore, even though the population wide transmission cannot completely349

eradicate infection, it has a significant effect in reducing infection prevalence to low levels.350

The discrepancy between the potential impact of population wide and of individual to351

individual transmission of information on endemic thresholds has important public health352

implications. These are exemplified in the United Kingdom’s early AIDS epidemic, which353

was concentrated largely among men who have sex with men (MSM). Informal informa-354

tion campaigns within the male homosexual community can be dated to early 1983, prior to355

dissemination in the gay press (1983-4) and long before the wider government sponsored cam-356

paigns of 1986-7. It is estimated that HIV transmission peaked around 1983 among MSM357

[15], followed by a rapid decrease which was paralleled by a marked fall in male syphilis358

incident cases, a disease which also concentrates among MSM in the UK. The associated359
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reduction in the force of infection is thought to have been a major factor in limiting the360

size of the HIV epidemic in the UK, both through reducing spread among MSM, and limit-361

ing bridging to the heterosexual population. The wider population information campaigns362

of 1986-7 were however associated with much less dramatic changes both in rates of STI363

diagnosis among women and heterosexual males.364

This is a simple model that captures some important features, and although contact365

heterogeneity is not accounted for, it illustrates how an active host population and the366

transmission of information triggered by the disease can eradicate or minimise infection367

levels. We have suggested different model choices, but focused our analysis on the most368

basic one. Further analysis can help to better understand how disease dynamics is affected369

by the population wide transmission of information and by how fast the value of information370

decays over time.371

5 Appendix372

Here we prove Theorem 1 (the case of βnr = βr, γnr = γr).373

5.1 Existence an uniqueness of the endemic equilibrium374

In this special, case the original system (Eqs. (9)-(13)) can be rewrite in terms of τ, i, snr, inr.
The original variables can be easily expressed in terms of the new ones as follows

ir = i− inr, sr = 1− τ − i− snr.

The differential equations take the following form in terms of the new variables,375

τ̇ = γri− rτ, (36)

i̇ = i(βr − γr − βrτ − βri), (37)

ṡnr = −βrisnr − αs(1− snr − inr)snr − δsi

k + i
snr + ds(1− τ − i− snr) + prτ, (38)

i̇nr = βrisnr − αi(1− snr − inr)inr − δii

k + i
inr − γrinr + di(i− inr). (39)

The main advantage of this special case and the choice of the variables is that the first two
equations form an independent subsystem within the whole system. It is easy to see that
the steady states of the subsystem given by Eqs. (36)-(37) are

(0, 0) and
βr − γr

βr(γr + r)
(γr, r).

Thus the endemic equilibrium may exist if βr > γr and its τ and i coordinates are given by376

τ =
γr(βr − γr)

βr(γr + r)
, i =

r(βr − γr)

βr(γr + r)
. (40)
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The snr and inr coordinates of the endemic equilibrium are determined by377

0 = −βrisnr − αs(1− snr − inr)snr − δsi

k + i
snr + ds(1− τ − i− snr) + prτ, (41)

0 = βrisnr − αi(1− snr − inr)inr − δii

k + i
inr − γrinr + di(i− inr), (42)

where τ and i are given by Eq. (40). First we prove the uniqueness of the endemic equilib-378

rium.379

Proposition 4 If βr > γr, then the system given by Eqs. (36)-(39) has a unique equilibrium380

with positive coordinates.381

PROOF. We have seen that the subsystem given by Eqs. (36)-(37) has a unique positive382

solution. Hence we have to prove that Eqs. (41)-(42) have a unique positive solution such383

that sr > 0 and ir > 0 is fulfilled, that is384

snr < 1− τ − i =
γr

βr

, and inr < i. (43)

Solving Eq. (41) for inr we obtain385

inr = 1 + a1 − a0

snr

− snr := h1(snr) (44)

where

a0 =
dsγr

αsβr

+
pγri

αs

, a1 =
βri + ds

αs

+
δsi

αs(k + i)
,

and i is given by Eq. (40). Solving Eq. (42) for snr we obtain386

snr =
inr(b1 + 1)− b0 − i2nr

b2 + inr

:= h2(inr) (45)

where

b0 =
dii

αi

, b1 =
γr + di

αi

+
δii

αi(k + i)
, b2 =

βri

αi

.

Thus we have to prove that the curves inr = h1(snr) in the domain 0 < snr < γr/βr and387

snr = h2(inr) in the domain 0 < inr < i have a unique intersection point. In order to prove388

the uniqueness it is enough to show the following.389

(i) The functions h1 and h2 are concave,390

(ii) h1(γr/βr) > i,391

(iii) h2(i) > γr/βr .392
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Namely, assume that there would be two intersection points. Then the straight line deter-393

mined by these two points separates the endpoints of the two curves (γr/βr, h1(γr/βr)) and394

(h2(i), i) because of the concavity of the curves. One can see from Fig. 6 that this contradicts395

to (ii) and (iii). Hence we have to prove (i)-(iii).396

The concavity of h1 is obvious. For the concavity of h2 the following equality can be used

inr(b1 + 1)− b0 − i2nr = (b2 + inr)(b2 + b1 + 1− inr)− b2(b2 + b1 + 1)− b0,

hence

h2(inr) = b2 + b1 + 1− inr − b2(b2 + b1 + 1) + b0

b2 + inr

from which h′′2(inr) < 0 easily follows. For (ii)

h1(
γr

βr

) = 1− γr

βr

+
(1− p)βri

αs

+
δsi

αs(k + i)
.

From Eq. (40) it follows that 1− γr

βr
> i, implying h1(γr/βr) > i. In order to verify (iii) we

have

h2(i) =
i(b1 + 1)− b0 − i2

b2 + i
=

D + γr + αi(1− i)

βr + αi

where D = δii/(k + i). It is easy to prove that

γr + αi(1− i)

βr + αi

>
γr

βr

.

However, this implies h2(i) > γr/βr.397
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5.2 Dynamical behaviour of the system399

Let us first consider the case Ri
0 ≤ 1, that is βr ≤ γr. In this case the only nonnegative

steady state of the system given by Eqs. (36)-(37) is the origin. From Eq. (37) one can see
that i̇ < 0 when i and τ are positive, thus i(t) → 0 as t → +∞. Hence Eq. (36) implies
that τ(t) also tends to zero. Thus the origin is a globally stable equilibrium of (36)-(37), and
inr(t) → 0, ir(t) → 0 as t → +∞. The dynamical behaviour of snr can then be determined
from Eq. (38) by substituting i = 0 and τ = 0. In this case, sr = 1− snr and Eq. (38) takes
the following form

ṡnr = (ds − αssnr)(1− snr).

This equation can have two equilibria 1 and ds/αs. If ds/αs > 1, then the only biologically400

relevant equilibrium is snr = 1 and it is globally stable. If ds/αs < 1, then there are two401

equilibria, and snr = 1 is unstable, while snr = ds/αs is globally stable. Thus, we have402

proved the first two statements of Theorem 1.403
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Let us now consider the case of Ri
0 > 1, that is βr > γr. In this case, the system404

given by Eqs. (36)-(37) has two nonnegative equilibria, the origin and the equilibrium405

given in Eq. (40). Linearisation shows that the origin is a saddle point and the endemic406

equilibrium is stable. Upon adding Eqs. (36) & (37), immediately follows that τ̇ + i̇ < 0407

when τ + i ≥ 1. This implies that all the trajectories (in the nonnegative part of the phase408

plane) are bounded. Thus the Poincaré-Bendixsson theory implies that all trajectories tend409

to the endemic equilibrium or to a periodic orbit. The existence of the periodic orbit can be410

excluded by the Bendixsson-Dulac criterion using the Bendixsson function 1/i, since dividing411

the coordinates of the vector field by i the divergence is −r/i − βr < 0. Thus we proved412

that the equilibrium given by Eq. (40) is a globally stable equilibrium of the system given413

by Eqs. (36)-(37). The dynamical behaviour of snr and inr can then be determined from414

Eqs. (38)-(39) by substituting i and τ with the expressions given in Eq. (40). Drawing the415

nullclines, given by Eqs. (41)-(42), and the direction field of this two dimensional system,416

one can see that the unique equilibrium is globally stable, since all trajectories are bounded417

and the existence of a periodic orbit is excluded by the position of the nullclines that are418

shown in Fig. 6.419
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Figure 1: Illustration of all possible transitions.
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Figure 2: Three different model outcomes, (a) trivial disease-free steady state (b) non-
trivial disease-free steady state and (c) endemic steady state, illustrated in terms of snr

(continuous), sr (dashed) and inr + ir (dotted). Parameter values are γnr = 1/(26 weeks),
γr = 1/(13 weeks), r = 1/(1 week), d = ds = di = 1/(12 weeks), δs = ds, δi = di, p = 0.5
and k = 0.01. The other parameter values for the different panels are: (a) βnr = 0.5γnr,
βr = 0.5βnr and αs = αi = 0.5ds, (b) βnr = 2γnr, βr = 0.5βnr and αs = αi = 4ds, and
(c) βnr = 4γnr, βr = 0.5βnr and αs = αi = 4d. The initial condition for all cases is
(snr, sr, inr, ir, τ) = (0.5, 0, 0.5, 0, 0).
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Figure 3: Illustration of the long term behaviour of the system as a function of Rr
0 and Ri

0

for increasing values of αi = 0.05 j (j = 0, 1, 2) and di = 1/(52 weeks) (a), and α = αs =
αi = 0.05 j (j = 0, 1, 2) (b). For both cases, γnr = 1/(26 weeks), γr = 1/(13 weeks) and
βr = γnr.
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Figure 4: Illustration in terms of the (x, n) coordinates of the uniqueness of the endemic
equilibrium. Dashed lines represent the positivity conditions given in Eqs. (34) and (35) (Eq.
(34) B, black; Eq. (34) C, red; Eq. (35), green). Continuous lines correspond to the curves
given by Eq. (31) (red) and Eq. (32) (blue). The intersection of these two curves determine
the (x0, n0) pair that is used to compute the endemic equilibrium in terms of the original
variables. The asterisks, in all panels, denote the (snr, sr) pair. The top row corresponds to
α = 0.5d (i.e., Rr

0 = 0.5), while the bottom row illustrates the case of α = 2.0d (i.e., Rr
0 = 2).

The other parameter values are γnr = 1/(26 weeks), γr = 1/(13 weeks), r = 1/(1 week),
d = ds = di = 1/(12 weeks), δs = δi = 0, p = 0.5 and βr = 0.025. For completeness,
positivity bounds outside biologically plausible regions (0 < x < 1 and 0 < n < 1) are also
shown.
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Figure 5: Illustration of the level of prevalence once the endemic equilibrium is reached (inr-
red, ir-blue, inr+ir-black). The starting point is the worst case scenario when δ = δs = δi = 0
and p = 1.0. The case of constant p = 1 (continuous lines, increasing δ) and constant
δ = δs = δi = 0 (dashed lines, decreasing p) are shown. The other parameter values are
γnr = 1/(26 weeks), γr = 1/(13 weeks), r = 1/(1 week), d = ds = di = 1/(12 weeks),
βnr = 3γnr, βr = 0.5βnr, α = αs = αi = 2d and k = 0.01.
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Figure 6: Illustration of the functions inr = h1(snr) and snr = h2(inr). As indicated by
Eq. (43), snr and inr are restricted to snr < γr

βr
and inr < i, respectively. The values of the

parameters are βnr = βr = 1/13, γnr = γr = 1/26, αs = αi = 0.02, ds = di = 1/52, δs = αs,
δi = αi, r = 1, p = 0.5 and k = 0.01.


