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Abstract Over the years numerous modelsS6 (susceptible— infected— sus-
ceptible) disease dynamics unfolding on networks have pemgosed. Here, we dis-
cuss the links between many of these models and how they caielwed as more
general motif-based models. We illustrate how the differandels can be derived
from one another and, where this is not possible, discusnsixins to established
models that enables this derivation. We also derive a gerealt for the exact dif-
ferential equations for the expected number of an arbitnaoyif directly from the
Kolmogorov/master equations and conclude with a comparidhe performance
of the different closed systems of equations on networkswnfing structure.
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1 Introduction

Modeling the spread of infectious diseases requires anrstaheling of not only
disease characteristics but also an understanding of timencaity (be it a hospi-
tal, school, town, etc) in which it pervades. An importamsideration in modelling
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the spread of diseases is thus the contact structure on disiehse transmission hap-
pens. Whereas traditional approaches ([2, 5]) assumedittie topological structure,
recent work ([13—15]) has tried to incorportate the undegdylinkages between en-
tities in the population and study how these links faciéitdte spread of the disease.
For a continuous-time stochastic disease transmissiohoocan arbitrary network
it is possible ([11]), to write down the relevant Kolmogohmaster equations and
thus model it as a continuous time Markov chain that fullyolié®s the movement
between all possible system states. Unfortunately the ity of the model comes
from the size of the state space and the number of equatiafessexponentially as
aV, wherea is the number of different states a node can be inNdrisl the network
size. One widely used resolution to this complexity is tateendividual-based sim-
ulation models and investigate the system behaviour dljrétten though increasing
computational power makes simulations an increasinghactive proposition they
lack analytic tractability. Whilst this is not always a hiadice, when the system dis-
plays a rich range of behaviour (e.g. oscillations, biditghit may not be feasable
to obtain a global overview of the effects of different paeten values and thus the
more analytic approach is needed. For this reason, low+thional systems of dif-
ferential equations ([13,6,15]) are sought provided thasé can approximate the
exact solution. By reducing the problem to a smaller systépgaations it is easier
to study the bifurcation structure of the model and gain atgreunderstanding of
the full spectrum of behaviour. The challenge is then findiregset of equations that
best approximate the solution of the Kolmogorov equations.

Given that here we focus on epidemic models, usually suchetaate formu-
lated in terms of the expected values of the number of infeated/or susceptible
individuals or some other motif in the network such as theeetgd number of in-
fected and/or susceptible individuals of different degriglbe number of connections
a node has). Such models range from classic meanfield [1]iteipa [13], het-
erogenous pairwise [6], effective degree [15, 16] and iiddizl-level models [20] to
name a few. Whilst these models seem to use different appesabkir derivation
is based on the same conceptual framework, namely they bggihoosing a base-
motif (e.g. a node, a link and the two nodes it connects, a aadall its links). These
base-motifs are then used to formulate equations for tierdiit possible states that
they can achieve (e.g. for the expected number of motifs fierdnt states or the
probability that a specified motif in the network is in a cértatate). These equa-
tions generally involve not only the base-motif itself, larger or extended motifs of
which they are usually part of. These larger motifs in turpeted on more complex
motifs and a closure is needed in order to obtain a self-goedesystem of equations
of reasonable size. Importantly the base-motif determinwsonly the complexity
of the model (the larger the motif the greater the number atestit can be in) but
also how much of the network topology can be captured. Istegly differential
equations for smaller motifs that are part of the base-nsbtifuld, in theory, be re-
coverable from the original differential equation. To tkisd the main focus of the
paper is the consideration of various simple models of dségnamics and the rela-
tions between them. We also consider which models are ddeidirectly (subject to
a suitable closure) from the Kolmogorov/master equationtscan thus be referred
to as exact.
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We begin in section 2 with an introduction of some of the masenmon ap-
proaches to modelling disease dynamics on networks, caisgdmeanfield ([1]),
pairwise ([13]), heterogeneous pairwise ([6]) and theatiife degree ([15]) model
formulations. In section 3 we formulate an exact versiomeféffective degree model
and then illustrate how the pairwise model can then be re@edvieom this new set of
equations. We are, however, unable to recover the hetevaggrairwise model from
the exact effective degree and this motivates, in secti@m£xtension of this which
incorporates further network topology into the ODEs. Frdnis £xtension we then
show how it is then possible to recover the heterogeneouwigai equations. Once
the links between the models have been established, iroaegtive show how the
unclosed version of the models can be derived directly froenkolmogorov equa-
tions. This is done by proving that as long as the heuristimégns for any motif are
written following a certain set of rules they will always beaet. We conclude, in sec-
tion 6 with a brief comparison of the models and discuss umdet circumstances
they perform best, in the sense of being close to simulageults.

2 Models of disease dynamics

In this paper we focus on susceptible infected — susceptible 945 disease dy-
namics on networks but note that all of the following models be adapted for other
disease (e.dd Rand/or contact tracing) or non-disease (e.g. evolutiof@)ylynam-

ics. With this in mind we use as the per-link transmission rate between susceptible
and infected nodes anyhs the recovery rate of an infected individual. Both infexti
and recovery are modelled as independent poisson procéssasstarting point we
give a short summary of ODE-based models that are eithet exaa approximation

of the true dynamics resulting from the full system basedendolmogorov/master
equations, where these are solvable, or based on simulation

2.1 Pairwise and the resulting simple compartmental model

In order to focus on the underlying network of contacts, weottuce the pairwise
model first ([13,19]). The main idea of this model is to deyelbe hierarchical de-
pendence of lower order moments (e.g. expected number oéptiisle[§ and in-
fected[l] nodes) on higher ones (e.g. expected number of pairs witlsaseeptible
and one infected nod¢sl]) and to derive appropriate models that correctly account
for these. As already suggested, the expected number of\wdlidepend on larger
motifs, in this case these being the expected number oktrigenoted byABC],
whereA,B,C € {S1} andB is connected té\ andC. Using this notation the equa-
tions governing the evolution of the disease dynamics dethed of singles and pairs
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are given by
d
S 1=y ris), )
& lss = —ariss 120, @
19 =113~ 08) - 1) +y (1] -9, @
Si=20(18)+08) -2/ @

Importantly we note that these equations are unclosed agumtiens are given for
the evolution of the triples. The standard closure (in theeabe of clustering) makes
the assumption that the status of pairs are statisticallgpendent of one another and
then

[ABC] ~[AB](n— 1)[5;]],

wheren is the average degree of the network. When we use this closisawwe
have closed “at the level of triples” . In order to derive thessic mean-field model a
closure at the level of paris can be applied, nani&ly,can be approximated as

EIENER
and upon using Eq. (1), the classic mean-field model can loveeed
d._ (1]
G 1=—vll+mis g, (5)

where the widely used transmission rate from the compairimhemodel,[1], isB =
n.

It is also important to note that the unclosed equations @alfggs. (1-4)) can be
derived directly from the state-based Kolmogorov equatiand for this reason we
refer to these equations as exact. Whilst a proof for the arastof these equations
was given in [21], in section 5 we provide a more general pthat allows us to
write down exact equations for, not just pairs, but any mettificture. We also note
that an alternative approach was used by Sharkey in [20Faeepthat the standard
pairwise equations were exact for models with susceptiblmfected— recovered
(S R) disease dynamics.

2.2 Heterogeneous pairwise model

Whilst the pairwise equations perform well in capturing dse dynamics on net-
works that are well described by their average degree, it assumption fails
when greater heterogeneity is introduced. More precisdhjist the pairwise equa-
tions above are exact for an arbitrary network before a cgsbese do not guarantee
that with the current choice of singles and pairs (iSe.could be further divided to
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account for heterogeneity in degree) a valid closure coalfbtind for any network.
Indeed, to account for greater heterogeneity Eaebes. [6] further developed the
pairwise model by taking into account not just the state afasoand pairs but also
the degrees of the nodes. By usiffg] to represent expected number of nodes of
type A with degreen and with similar notation for pairs and triples, they weréeab
formulate the following set of unclosed equations

; y[1" —TZ [S"9), (6)
gt[l = +TZ (S, @)
[S‘S“ —TZ ([S'SM9+-[198'S™) + y ([S"1™M] +[1"ST), (8)
%[s”ﬂ“] = rZ([S“S“N] —[191™) — 7 [SU™) — y SN 4y [N, 9)

|| —rz (I"S™M9) 4+ 19S1™) + T (IS + T[S -2y [IM™. (10)

Again assuming the statistical independence of pairs aselaie of clustering, Eames
et. al, [6], suggest the following approximations of triple

[C™DP]

[B"C™DP] ~[B"C™](m— 1) SR

2.3 The effective degree model

In [15], Lindquist et al. introduced the effective degree model faIS (and also
SR) dynamics on a network (an equivalent model formulation ais® proposed

by Marceau et al. [16]). In this model they consider not ohly $tate of a nodeS(or

1), but also the number of the immediate neighbours in theouarpotential states.
This is done by writing the following set of equations for #ilke possible star-like
motifs in the network wher&; (Is;) represents the expected number of susceptible
(infected) nodes witls susceptible andinfected neighbours,

Si=—TiSi+Ysi +Y[(i +1)Ss-1i41 — iSsi]
Zk 1241k 1S
Zk_121+l kISl

[(5+ DSsi1i-1— S, (11)

lsi =TiSsj — Vlsj + Y[(i + Dls-1ip1 —ilg]
Zk 1Z|+| k Sjl
DD DI [IY

+

(84 Dlssai-1—Slsi], (12)
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with 1 < s+i < M, whereM is the maximum degree and the equations are suitably
adjusted on the boundaries. It is important to note thatrtioslel is not exact as a
closure has been already applied. Namely the infection ofi@s susceptible neigh-
bours is based on a population-level approximation. Taiithte this more precisely
we borrow the notation of the pairwise model and make two vasiens

ZQA=1ZJ+|=|<J'|51,| _[1sy
PSP SIS TRENCSR

Zﬁ":lzj+|:k'231,l _ ZklezHI:kl(l -1)S; +1§;) _1s]+[s]_ [1s] 1

Zyzlzjﬂzkj'j,l Zklesz:kjlj,l [S] [S]

These means that the infection pressure on the suscepgiglebhours of the central
node is equal to the population level average taken fronhalpbssible star-like con-
figurations rather then from the extended star structurasvibuld account exactly
for these infections.

3 Recovering the pairwise model from the effective degree

Whilst the pairwise and effective degree models seem diffarey are based on a
similar approach. Both models work on approximating thdwian of different mo-
tifs in the network; individuals and links in the pairwise d&band star-like structures
in the effective degree. For both models, but more cleamyife pairwise, the mod-
els begin with a starting or base motif (e.g. nodes) for whictevolution equation is
required. This will of course depend on an extended motgfically the base motif
extended by the addition of an extra node (e.g. pairs). Tepeddency on higher
order motifs continues, for example, with pairs dependingyiples, and then triples
depending on quadruplets (four nodes connected by a llmé+B—C—D, or a star

with a centre and three spokes, ike- B—C D). Hence, the models only differ in
the choice of the base motif and then potentially in the wayliich the systems are
closed to curtail the dependency on higher order motifsc&ihere we are mainly
interested in exact models, that is before a closure is eghplve begin by conjectur-
ing an exact version of the effective degree model and shawdtarting from this
the exact pairwise model can be derived.

3.1 Exact effective degree

Based on the ideas presented above, we extend the staabkentotif to reveal the
dependence on higher order motifs and conjecture that titsed version of the
effective degree model is exact. We begin by introducingrafsée to count the ex-
pected number of infecteds connected to a node’s susceptdijhbours. This is
done by introducing two new term8SS; ] and[ISly y/]. For the term Sy ] (and
similarly for [ISSy ;/]) the Sin the middle is actually used to represent the susceptible
neighbours of the centralfrom the motif with compositionyi: (i.e. thel node with
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neighbourhoods,i’) is the centre of the star, whilgis a susceptible spoke). The
(on the left-hand side), in turn, represents the infectigigimbours of these suscep-
tibles’ and within this count, in the case P8y i/], we also include the originating
centrall. The exact effective degree model can then be written as

Si=—TiSi+Vsi+V[(i+1)S 111 —iSi]
+T[1SS51-1] — T[I1SS51], (13)

lsi =TiSsi — Vsi + V(i + D)ls-1j41—ils]
4 T[1Ss1i 1) — T[1Ss]. (14)

Fig. 1 shows the possible transitions captured by this model

—7iSsi

Recovery of an infectious neighbour

External infection of a neighbour Infection of the central node
. —BiSsi
BISSs1i]
. —B[15S;,]
(i +1)Ss-1,i41
.0
Recovery of an infectious neighbour External infection of a neighbour

Recovery of the central node

Vi

Fig. 1 lllustration of the transitions into and out of t1% 1 class. Susceptible nodes are given in blue
and infective nodes in red. Transitions into the class aogvehin grey and transitions out in green. The
corresponding terms of the general equation are also given.

3.2 Recovering the pairwise equations

The star-like composition of the effective degree modelivedl us to recover the pair-
wise equations via careful summations. The full derivatibthe pairwise model is
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given in Appendix 1, whilst here we only illustrate the detion of the individuals
(trivial but given for completeness) and thé][pairs,

SIS =Y si=yll-rls],

=S ki= v,

where most terms from the original effective degree equnatitancel and we have
used thad ;iS;i = [S] and} g Isi = [I]. For(l1] the following equality holds

d .
&[”] :%:n&i

=1 PSi—y) ilsi+yY i+ Dls1ia—y>_i%ls;
+T) i[lSisiai-a] = T i1 Sis]
=t) i — 1S +TYiSi—yill]
HYIN]—y> i =Dlsi—y> ils;
+TY (= D[Sz 2]+ [1S9s12i-1] =Y _i[ISisi]

=t[IS]+ 1[I =y +y[IH]=y[IH]—y[]+T[19]+1[I]
=2t ([19]+[15) — 2y[l1],

where we have used that;ils = [I1], > ; (i — 1)[I9s1i-1] = >_i[ISs] and that
> [1S9s41-1] = [IS] + [9]. These all follow from the definition of the pairwise
model and the definition of the new extended motifs from thecerffective degree
model. We note that this result does indeed correspond taftiae given pairwise
model.

4 Higher order models

Whilst we can recover the pairwise equations from the exdetife degree model
we note that the same is not possible with the heterogeneugige equations. This
motivates an extension of the effective degree model wiherdégrees of neighbour-
ing nodes are also taken in to account. Again we conjectatethliis model can, in
theory, be derived from the exact Kolmogorov equations hod tefer to it as exact.
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4.1 Exact effective degree with neighbourhood composition

We extend the exact effective degree model to include thebeumf neighbours of
the central nodes’ neighbours. We begin by defining theiolig notation

SI:(SlaSZ7"'7S'\/|)7

i = (i1,i2,...,im),
IS|=s1+s+...+ 5,
|i/|=i1+i2—|—...—‘ri|\/|,

wheres; (i) represents the number of susceptible (infective) neigrdof degreq.

We now defineSyy/, (lgir) as the number of susceptible (infective) nodes with neigh-
bouring nodes whose own degrees are given by the entrigsaimdi’. We can now
write the extended ODEs in the following form

M
Sy =— Tl |Syi + Vg + VkZ; (k+DS i VIS

M

"> {|§<S§Wi,kf] —T[ISsey], (15)

k=1

M
lg i =Tl'|Syi = Vg +v Y (it Dlg 5 —Vii'llg
k=1

M

> {Ig‘lqwid —1[I1Ss]. (16)

k=1

Heres,_ =(s1,%,...,%—1,...,8v) andg, = (s1,%,...,%+1,...,5v) with a sim-
ilar definition forij_ andij . With a small modification to the exact effective degree

notation terms such a{$§<%ﬁ,id are taken to represent number of infectious con-
tacts of the susceptible neighbours of dedcee

4.2 Model recovery

Here we show how, from the extended effective degree modelcam recover the
heterogenous pairwise model. It is also straightforwardhow, and thus omitted
here, that the extended effective degree leads to the girapdet effective degree.
In turn, it also follows easily that both the exact effectdegree and heterogenous
pairwise models reduce to the standard pairwise model.Hidiarchy of recovery is
illustrated in Fig. 2.

4.2.1 Recovering the heterogeneous pairwise model from the extended effective
degree

As earlier we make use of careful summation to recover thesindtie full derivation
is provided in Appendix 2 so here we just provide the derbrait the individual level
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and of the ['I"] pairs. For singles the following identities hold,

SIS= Y s=yiT-Tsl,

IS'|+i"[=n
S0= Y ter =y (s,
|s'[+i’|=n

where most terms from the original effective degree canoelvee have used that

Do dgp=[" and Y ||syi =[S

|s'[+[i"|=n Is'[+[i"|=n
For the[l'I"] pair we obtain
d

= {|'|”}: 3 e

|s'|+i"[=n

M
=Ty ifli1Se =y ille i YD ([ Dlg i,
k=1

—y3 il g +TZi|’kzM; [|sk|%7i,kj —t> i 1S9
=t i (- D) Syp Ty sy v [
+V{|I|n|} =y it (=) lgp =y iflg
+rZi;k§ (1495 i, [+e> G- [1S1g i |
+ry 18Iy |-t i s
1 [l'sﬂ +T [l'S‘} —2y[|'|“}
+y{l'l”|} —y[|'|"|} +T [|s'|”] +T [SH“}
—1 [l's"l} +T [I'S”} —2y[|'|”} T [lﬁl”} +T [§|“}
= ([l'sﬂ +[|q§|m]) +T {l'sﬂ +T [ﬁl”} —2y[|'|”] .

Again, we note that this result corresponds to previousigrgheterogenous pairwise
model.

5 Exactness of the models

In the previous sections we have at times referred to a seD&EIas being exact.
This terminology implies that the ODEs can be derived diydobm the Kolmogorov
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(a) Extended effective degree

(b) Effective Degree (c) Heterogeneous pairwise
( /

Fig. 2 lllustration of the hierarchial structure of model recoveripnks that are known are given by lines

and knowledge of a nodes status is given by circles. The Uppel (a) represents the extended effective
degree ODEs. The status of the central node is known alorigthétt of it's neighbours and also their

degrees. The secondary level is given by (b), the effectagrab model where there is no knowledge of
neighbours’ degrees and (c), the heterogenous pairwiselmteee the number of pairs of nodes and
their relative degree is know. The final level shown, (d),i®Wn as the standard pairwise model, [13],
where the status of individual nodes and pairs is used.

(d) Pairwise

O0—0

equations which describe the evolution of the epidemicu@inathe full state spacg
(on a network of sizé&l, S = {S 1}N). In [21] the exactness of the pairwise equations
was rigorously proven but no other motif structures weresaered. In section 3.1,
we conjectured that the newly defined exact effective degradel is derivable from
the Kolmogorov equations. Due to the structure of the matifed in the effective
degree model a mechanistic proof (as in [21]) may be diffiantt intricate to imple-
ment. Instead we will prove that a heuristic formulation lod ODEs for any motif
structure is indeed exact providing they are written follgwrigorous bookkeeping
This derivation of the evolution equations for an arbitramgtif, directly from the
Kolmogorv equations, will be based on an extension of ideasgmted in [11] and
[21] and using the notation defined in Table 1.

We should note that in what follows a motif of connected nogd#ksonly ever
be counted once. In a network of sil¥eand in a motif,m, with k nodes this singular
counting can be understood in the following way. We consédeh of the('z) unique
sets ofk nodes between 1 ard. Then for each set whose nodes are isomorphic
in topological structure and status to the matif we simply increase the counter
of such motifs by one. This formalism is unlike that used ia ftandard pairwise
model where aisSlink would contribute a value of two to tH&3 count. However,
the two resultant sets of equations are equivalent in theestirat the different ways
of counting can easily be recovered by using a simple magpéhgeen the two. For
this reason, whilst we prove that the following theorem igeat, it's intricacy and
generality means a certain amount of care is needed whepiietimg the resultant
terms. Table 2 summarises the additional notation needeithdonewly introduced
motif approach. The result for a general motif is given infibleowing theorem.
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Table 1 Notation for matrix representation of the Kolmogorov equagi¢Table from [21]).

Variable Definition

N Number of nodes in the network

G=(gj) € {0, 1}"‘2, i,j=1,2,...,N Adjacency matrix withgij = 1 if nodesi and j are con-
nected andjj = 0 otherwise. The network is bi-directional
and has no self loops such tlat= GT andG;; =0,V i.

T Rate of infection per |) edge.

y Rate of recovery.

S={sI}N State space of the network, with nodes either susceptible,
S, or infected) and|S| = 2V.

Sk ={sK,SK,... SE} Thec = () states wittk infected individuals in all pos-
sible configurations, withk=0,1,...,N.

XK(t) Probability of being in stateS¥ at timet, wherek =
0,1,...,Nandj=12,... c.

T
X (t) XK(D) = (XK, XEW), - X 1)
Ai‘fj Rate of transition fron:Skal to S, wherek=0,1,...,N,

i=12...,.ckandj =12 ...,ck1 . Note that only one
individual is changing (i.e. in this case &mode changes
to anl through infection).

i=12,...,.cxandj=12,...,c1. Note that only one
individual is changing (i.e. in this case amode changes
to anSthrough infection).

ck. Rate of transition frons**1 to Sk, wherek = 0,1,...,N,

BY; Rate of transition out of¥, whereBf; = 0 if i # j with
k=0,1,...,Nandi,j=1,2,...,¢c.

Theorem 1 The equation for the expected number (|M|) of motifs of type rh, given
by

M| =T (f, /) + TS (1, /) — T MINS () — TAS ()
+yN (L) — Y MIN! () (17)

is derivable directly from the exact Kolmogorov equations.

5.1 Proof of Theorem 1

For a detailed description of writing the Kolmogorov eqaas for an arbitrary graph
we refer the reader to [11]. Here we only provide a brief dpsion making use
of the notation defined in Table 1 to allow us to illustrate greof. SettingX =
(X1, X2,...,XN)T the epidemic evolution through the state space is given by

X = PX, (18)



Interdependency and hierarchy of exact and approximateepidnodels on networks

13

Table 2 Additional notation for matrix representation of the Kolmogwequations

Variable Definition

m An arbitrary motif encompassing both topology and status afesqe.qg.
anS—| edge or a star like structure suchlgsg). The arbitrary motif we
are consdering which will encompass both topology and st#toedes.

mt Represents the different motifs with the same structuren it 'with a
susceptible node oh having become infected.

e Represents the different motifs with the same structure bst Wwith with
an infective node omhaving become susceptible.

My j Set ofm motifs in configuration statsjk. Defining theit element ofMy

i o ol m M
asm ; givesMyj = {n‘ﬁrj,mﬁ‘j,.,.,m&j 1.
Mlzi The set of motifs, in configuration staﬂf, with the same topology as ~
but with 1 more infective and 1 less susceptible. Definingithelement
L IMF |+
PR <M
of M asni’; givesM,’; = {nkj,nﬁfj,‘..,nkj S
Mle The set of motifs, in configuration staﬁ%‘, with the same topology as ~
but with 1 less infective and 1 more susceptible. Definingithelement
! M- |-
_ _ _ 1 a0 = Vi,
of M, ; asn ; we haveM, ; = {fy .M ;,....M;* }.

Nm(SJ ) Number ofnrimotifs in stateSJk, withk=0,1,...,Nandj=1,2,...,¢c.

NS (h) Number ofgl links within the motifh.

N3 () Expected total number @& links within all motifs of typeh

N3 (h,k)  Number ofSl links within the motifh, along which, were an infection to
occur, would result in a motif of typle

NI (Fl, k)  Expected total number @ links within all motifs of typeh, along which,
were an infection to occur, would result in a motif of tylpe

N3 (h) Number ofSl links where theSis contained within the motih and thel is
external to it.

NS () Expected total number & links to all motifs with structurd, where the
Sis contained within the motifi and thel external to it.

N3 (h,k)  Number ofdl links where theSis contained within the motif and thel
is external to it, along which, were an infection to occurdoresult in a
motif of typek.

NS (h,k)  Expected total number & links to all motifs with structurd), where the
Sis contained within the motif and thel external to it, along which, were
an infection to occur, would result in a motif of tyge

N' (h) Number ofl nodes within motifh.

N! (F], k) Number ofl nodes within motifh, whose recovery lead to a motif of type
k.

N (hk) Expected total number d& within motifs of typeh, whose recovery lead

to a motif of typek.
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where

B°C°0 0 0 O
AlBIcl 0 0 O
0A2B2C2 0 O
0 0A3B3C2 O
0 0...... ... 0
0 0 0 0AVBN

P:

We now have the following equations for the state space fitities.
X0 = Bo%0+Ox1,
XK= ARXKL L BRXK - CfX* fork=1...(N—1),
XN = ANXN-L 4 BNXN,

From [11], we also know that the entries of the matBxare zero except on the
diagonals, where we find that

CKXJF:]-AIkJrl Ckzlck 1
= —TNg (S - kv (19)

Where [11] focussed on individual and edge motifs here wedasuthe derivation
of evolution equations for the expected number of and anfyitmotif, M. We begin
by writing the exact equations for an arbitrary matifbased on the transition and
recovery matrices. This yields,

N
M| =" Ni(SXK
k=0
=N (S) [B°X? +CX?]
N-1
3 N ) [AXKE 4 B X

+ Ni(SY) [ANXN 4 BYXN]

N N N—-1
=) Na(SYAXK LY " Ni(SYBXK+ D~ Ny (S)CHXKH
k=1 k=0 k=0
-1 N
:ZN (gt Ak+1x"+ZN JBXK+) " Np(Shck XK
k=0 k=0 k=1

[N (SHA+Ngy(S”)B%] X°
-1

+Z{ n( §<+1 Ak+1+N (§<)Bk+Nm(§<71)Ck71} Xk
k=1

+ [Nin(SH)BN + N (S¥ 1N 1 XM, (20)
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Before continuing we note the following

11— ZC

Bl =— ZAu——TNs ) =o.

Taking these and (19) into account and using the factBhatonly none zero on it’s
diagonal, we then obtain the following equation,

| M| =Ni(SHALXO

N-1
+ Z |: §<+1 Ak+l (Nm(§<) * NS| (§<)> — VkNm(§<) + Nm(g<—l)ck—l ] Xk
=1

+ [Nm<sN HCN T — yNNi(8)] X"
N
_Z [N (AR (Nm(g<) +Ng (sk))] XK-3%" [ykNm(§<) - Nm(§(71)Ck71} X~

-1 k=1
(21)
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We note that the term containin¢f vanishes becaug® is a column vector with all
zero entries. We now consider the summations involvingthedC matrices:

[Nm(sk+l)Ak+l} =

j

=rt [Nm(§j‘) + (number ofnfgained by node 1 becoming infectgd
—(number ofnflost by node 1 becoming infectgfl

+raT [Nm(S‘j‘) + (number ofnigained by node 2 becoming infectid

—(number ofnflost by node 2 becoming infectggl
+...

+rn—kT [Nm(s‘;) + (number ofnigained by nodéN — k) becoming infected
—(number ofnilost by node(N — k) becoming infected]
=T [Nm(gj() + (number of elements ¥, ; where node 1 is susceptible

and where node’4infection would lead to a motif of typm)”
—(number of elements d¥l j where node 1 is susceptibje

+roT [Nm(§j‘) + (number of elements df, ; where node 2 is susceptible

and where node’&infection would lead to a motif of typm)”
—(number of elements d¥l j where node 2 is susceptibje
+...
+rn_kT [Nm(s‘;) + (number of elements d¥l, ; where nodgN —k) is susceptible

and where nodéN — k)’sinfection would lead to a motif of typm)”
—(number of elements d¥l, j where nodéN — k) is susceptiblg] ,

grouping the terms we obtain,

M’

[Nn(STHA] =t (8] +r2 [N 7 10) 4 N7 1)

My

—7|Mij INS (1R Z NS (7 )]

i=1
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Similarly,

Ck—1

—ZNm Hekt

=y {Nm(éj‘) + (number ofnfgained by nodéN — k+ 1) recovering)

o 0]

i

—(number ofnflost by nodg(N — k+ 1) recovering)]
+y [Nm(gj‘) + (number ofnigained by nodéN — k+ 2) recovering)

—(number ofnflost by node(N — k+ 2) recovering)]
+...

+y [Nm(éj‘) + (number ofnfgained by nodéN) recovering)
—(number ofnflost by node(N) recovering)]

=y [Nm(gj() + (number of elements cm,gj where nodéN —k+ 1) is infective

and where nodéN — k+ 1)'srecovery would lead to a motif of typa) ~

—(number of elements d¥l, j of which node(N — k-+ 1) belongs)]|

+y {Nm(éj‘) + (number of elements cmkfj where nodéN —k+ 2) is infective

and where nodéN — k+ 2)'srecovery lead to a motif of type)”

—(number of elements d¥ly j of which node(N — k-+ 2) belongs)]
+...

+y [Nm(éj‘) + (number of elements cmkfj where nod€N) is infective

and where noddl’s recovery would lead to a motif of typ®) ~

—(number of elements d¥l, j of which node(N) belongs)],

grouping the terms we obtain

M|
[N(SC ] =y (s +yz N (5 ) — yiMi | (N ().
Defining
\M7 ‘ |MI<J
At = TZ [N,ﬁ (i, @) +NS (7, ] T|My NS (1 TZ [NS‘ }

|Mk_,-|

-y 3 Vit ]
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and settingd*+1 = [Af™L, AL AHL andckt = [Cf T et L CE Y yields,

Ck—1

I

N-1 N
M] =37 [Na(S 1AL 1 (N(S€) Na (89) | XK= D [ vk ) — Nen( S0 2] x¥
k=1~ k=1
N-1
=3 1 (Na(S) #Na (89) A (Na(S) Ny () | X<

k=1

N

> [N — (knn(89 +0 1) | x¥

Ez_ll

[Akﬂ] Xk+z {Ck 1} XK
k=1 k=1
N—-1 ¢k
Ak+lxk+ Ck 1Xk
k=1 j=1 kz;;
A M|
= T [N,ﬁ r‘?l'la, M) + N3 ( ﬁtp o) } T\MkJ|N.n TZ [NS
k=1j=1 | =1
N ¢k ‘sz‘
YDAy [N ] - Mg (N () £ X
k=1j=1 | i=1

=TAGR (M7, ) + TG (7, /) — T MING () — T ()
+yN () — YMIN' ().

Which matches equation 17 from Theorem 1. O



Interdependency and hierarchy of exact and approximateepidnodels on networks 19

5.2 Proof that the conjectured exact effective degree miedidrivable from the
Kolmogorov equations

Letting m be anSsj-type motif from the effective degree model earlier and gsin
Theorem 1, we find that the exact equations can be written as

T o )+ T ) — TLMING () — T ()
+ YN (R, ) — yIMIN' ()
=T x (the total expected number of SI connections witBip, ;_1-type motifs
where if infection occurs we obtainG;-type motif)
+ T x (the total expected number of S| connections where S liedwith
Ss11—1-type motifs and the | is external to the given motif
and where, were an infection to occur, we obtaf atype motif)
— 1S5 x (number of SI connections within an individugl;-type motify
— T x (the total expected number of SI connections where S belangs t
Ssi-type motifs and the | is external to the given motif
+ y x (the total expected number I's withB_1 i 1-type ands;-type motifs
where there recovery would giveSg;-type motif)
—¥Ss; x (number of | within an individua&s;-type motif)
=T[SS1i1] —TiSi — T[ISSi] + Vls + V(i + 1)Ss1i41 — ViSs;

which is indeed the conjectured exact equationggr(similar derivation holds for
Is;). To clarify the above derivation we note that a term such/ﬁ’§1 (m~, M) will
make no contribution to the resultant equation as there@metarnalS connections
within S_1j+1-type motifs along which an infection would lead to &y;-type motif.
However other terms, such ag/J (i, M), have a direct correspondence with the
resultant output (in this case thigl SS; 1 1] term).

6 Comparison of the closed models

In comparing the models the obvious question to ask is whes doe model perform
better than another, i.e. which model approximates betterave accurately the sim-
ulation results or the solution of the Kolmogorov/mastena@pns where solvable.
As discussed earlier, the pairwise model is known to perfaett on networks that
are well characterised by the average degree (i.e. recamalom and Erfs-Renyi
graphs). What is less known is under what circumstances dodtezogenous pair-
wise and effective degree models outperform one another.

To assess the performance of the three closed models we oednipaividual
simulations to the solutions of the ODE’s on four differeypes of undirected net-
work. Firstly we use regular random networks where all ndde® the same number
of randomly chosen neighbours. Secondly, on ardEs#Enyi random network where
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the distribution of degrees converges to a Poisson disinibuFigure 3 plots simu-
lation results against the different solutions of the OD&rstliese two networks. On
the regular network, whilst the two different pairwise misdend the effective degree
offer an improvement in performance over the standard meldréguations, there is
little to distinguish between the improved approaches. l@nHrds-Renyi random
networks, the pairwise model improves on the meanfield menaielin turn, the effec-
tive degree and heterogeneous pairwise models improvefestber on this. Again,

however, there is little to distinguish between effectiegiie and the heterogeneous
pairwise models.

=—simulation average

meanfield
0.9- pairwise
= = =heterogeneous pairwise
0.8 = = =cffective degree
0.7-
- 0.6
o}
S0
30
=
0.4
0.3
0.2
0.1
0 I I I I I I I I I )
0 0.5 1 15 2 25 3 35 4 4.5 5
Time
(a) Regular random
1r - -
=——simulations
meanfield
0.9~ pairwise
= = =heterogeneous pairwise
0.8 = = =cffective degree
0.7-
- 0.6
o}
So
‘g .
0.4
0.3
0.2
0.1
0 I I I I I I I I I )
0 0.5 1 15 2 25 3 35 4 45 5
Time

(b) Erdos-Renyi

Fig. 3 ODE performance on different networks Each network is of siz& = 500 and with disease
parameters given by= 1 andt = 0.5. Average prevalence was calculated from individual sitioria on

100 different networks. (a) Regular random network, eaalert@aving degree 7. (b) Ed-Renyi random
network with average degree 7.
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To investigate further we ran simulations on networks eitinidp greater hetero-
geneity. Firstly on a bimodal network generated by the coméiion model algo-
rithm [18] and secondly on assortative bimodal networksegated by rewiring the
aforementioned bimodal networks according to the algoritth Newman, [17]. The
results are illustrated in Figure 4. Whilst on random bimautwork there is little
difference between heterogeneous pairwise and effectigeee when assortativity
is added, there is a clear improvement in the performanckeohéterogenous pair-
wise model over the effective degree. This performance fiiemest, however, be
considered in terms of the model complexity given in table@¢ in this tableM is
the maximum possible degree in the network and we given th@mim number of
equations needed to implement the ODES).

Table 3 Complexity of closed ODEs

Model # equations complexity
meanfield 1 0(1)
pairwise 3 01)
effective degree MM+3)—1  O(M?)
heterogeneous pairwise MIM+1)—1  O(M?)
Kolmogorov equations " oY)

A final comparison between the performance of the differéoged models is to
look at their rate of convergence to the solution of the Kajorov equations on a
complete (fully connected) network. On a complete netwbik possible (see [11])
to reduce the full system of'2equations to jusN + 1 equations. This allows us
to compare the true solution to the approximate solutiorhefrheanfield, pairwise
(equivalent to heterogenous pairwise on a complete graphg¢fiective degree mod-
els. Interestingly we find that all three exhikit1/N) convergence, where although
both pairwise and effective degree bring an improvement eanfield, the difference
between the convergence of the two is neglible and almostehible (see figure 5).

7 Discussion

In this paper we set out to achieve a greater understanditigeafelation between
some of the more common approaches to modelling diseasenity;an doing so
we conjectured an exact version of the effective degree hjd8fand showed how
this model could be used to recover the pairwise model [1&] thén extended this
model to incorporate greater network structure and ilistt how, from this exten-
sion, we could then recover the heterogeneous pairwise If@jd&Ve then proved
that the conjectured exact effective degree model was thdgact by proving that
a heuristic derivation of an ODE model for an arbitrary mut#s derivable directly
from the Kolmogorov equations and noting that the exactéffe degree model was
just a particular case of this heuristic model. Finally wasidered the performance
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=—simulation average
pairwise

T hetero, irwi

= geneous pairwis

= = =cffective degree

Infected
o

L L L L L
G0 0.5 1 15 2 25 3 35 4 4.5 5
Time

(a) Bimodal

=simulations
pairwise

0.9~ = = =heterogeneous pairwise

= = =cffective degree

Infected
o

0 I I I I

. . . . . )
0 0.5 1 15 2 25 3 35 4 45 5
Time

(b) Assortative bimodal

Fig. 4 ODE performance on different networks Each network is of siz& = 500 and with disease
parameters given by = 1 andt = 0.5. Average prevalence was calculated from individual sitmha

on 100 different networks. (a) Bimodal configuration modelwZ07 nodes of degree 4 and 293 nodes
of degree 10. (b) Assortative bimodal network, with same degistribution as (c) but rewired to have
assortativity coefficient ~ 0.56.

of the different models on four different type of networksldrave analysed numeri-
cally the rate of convergence to the lumped Kolmogorov équaton a complete net-
work. These comparisons suggest a performance hierarcmpdéls as illustrated
in Figure 6 and it is worth noting that the performance berwfihe heterogenous
pairwise model on networks exhibiting susceptibleinfectious— removed (SIR)
disease dynamics was also touched upon in [4].

Whilst we have shown how current models can be extended in athedycan
capture more network topology, these extensions have a tineoeetical rather than
practical motivation as their added complexity makes thetronly less tractable but
also more resource intensive in their solving, thus makiegise of simulations more
of an attractive proposition. As the links between theseetwdre better understood,
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Fig. 5 Convergence to exact solution on a complete graptibsolute difference between the exact
steady state solution of the percentage of infected indal&land those calculated from three different
ODE models for 10 different network sizes and initial premake of 40 percent. Black triangles represent
meanfield, blue circles effective degree and red squaresaihgige equations. Linear lines of best fit are
also shown. This shows that the error(N) appears to be ofN)@S N tends to infinity.

future work will likely focus on the following three areasirgily, a more realistic
network will have a more clique-like structure. For examateindividual is likely
a member of a household in which he has regular contactsnagiihd less regular
contacts outside. Being able to incorporate this housettaletture within epidemic
models is thus important in understanding the outbreak acdssary curtailment of
an infectious disease (see [3,9,22]). Secondly, a netwbikdividuals is not well
represented by a static network. An individual may have lexgeontact with few
individuals but may create or break contacts with othersagsithat a static network
representation cannot capture. For this reason it is irapotd take into consideration
not only the dynamics of the disease but also the dynamidseofi¢twork and how
the two impact on one another (see [7,12]). Thirdly, assgmie can write down
exact differential equations we have to close them in some Waderstanding the
performance of current, and also the derivation of new ekxsus arguably the most
important task ahead as it is the closures that limit thegoerdnce of any system of
ODEs.
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Effective Degree

/ Pairwise \
/ Meanfield \

Fig. 6 Model performance hierarchy. Model performance hierarchy based on our observations. Kere
represents the Kolmogorov equations and HetPW the hetezogsrpairwise equations.

Appendix 1

Derivation of the pairwise equation from the exact effextilegree model for singles and pairs are as
follows,

s =Y =y -],

all= =y

where most terms from the original effective degree equatiansel and we have used thal;; iSs; = [3]
and) ;lsi = [I]. For the pairs the effective degree model yields,

d .
a[sﬂzgs&j

=—T) SSi+YY _Ssi+y) Si+DS 11—y isS
+TY SISSy1j 1] 1Y S[ISSy]

=—TISS+YIF+yD (- D[+ DS 1it1+YD_(+ DS 1i41
YIS +TY (s+D)[1SSsai-1] — T [1SSs41j-a] — Ty SISSy]]

=—1(ISY+y[I9+yIS§+y(IS - VIS§ - 1[IS§
=-21(1s§ +2y§,

d .

=T SSi—yY_Ssi+yD>_si+Dls1ira—yY _sls
+1) SISsi1i1] - Ty _s[ISs]
=11SS — YIS +y> _ (s— V(i +Dls-1iva+y D (+Dls 141
YIS +1) (s+1)[1Ss2i-2] 1Y _[ISs41i-1] — 7Y _s]ISisi]
=1IS§ —y[IF+y[l1g+yll] - y[Ig - 1(19]+[1S)
=t(IS§-[19]-[18)+y(]-[19),
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%[II} :%:ng
=1 iPSi—y) ilsi+yY ii+Dls 11 —y>_i%lsi
+1) il Ssi2ia] — Ty _i[ISs)]
=1y i(i—DSi+1y iSi—yll]
Y] =y il - Dlsi -y il
+1Y (= D[ISs0ia]+TY [1Ssi1ia] 7Y i[ISs]

=tI9]+ 1[I —y[l]+y[IN]—y[IH]—y[l]+T[19]+ 1[I
=2t ([I19]+[19) —2y[I1].

Appendix 2

Derivation of the heterogeneous pairwise equations froeneffective degree with neighbourhood com-
position model with the neighbourhood composition model. kugles and pairs the following identities
hold,

Q= > s =y TS,

8|+ |=N
Q0= X b= TS,
I9/|+i'|=N

s8] 5 4

[$/|+[i’]=n

==ty Sl S +yYoSlsi+vd gD (i + DS

wZ#li’\&wrZéZﬁAj [ESAESSEIE
—_7 [IS’S] +y[§|”] +VZ§1Z(W<+1)S§K,VH
k£l

V(8- D0+ DSy, +v>o(+DS g, —v[1S'S]
+T2511 Z [I és#(+-i{<,] + TZ(g’ +1) [|gsﬁ+’i{i]
e

—r [y g |- rd s

B [I§§] +y[§l”] +y[§§l] +y[l's“]
fy[IS@]f |§S‘]

-1 [I§§] - |S‘§‘] +y[§|“] +y[|'3‘],

|
|



26

Timothy J Taylor, Istvan Z Kiss

%[W‘]: S Sley

[$/[+i"[=n

M
=t SIS —yD> _Slsi+v> 9 Z(if&l)'sK i
pay

Yl TS [18 | rSg 18]
k=1
=T [IS"§] —y[ﬁl”} +yD 8> (+Dlg i
kA

VSO DG+DIg g Y+ DIg v [inS]
+TZ§IZ [|Sk|q(+‘i{<7] +TZ(§I+1) [Igls{ri{f]
kA

—r3 181 |- 30d sy
-7 [|S“§] fy[ﬁln} +y[§|”|] +y[|'|"]
—y[u”si] —r[|§|"] —r[§|”]
—7 [ls"é] fr[|§|”] fr[éln] +y[|'|”] fy[§|“]7

% D e

[s'+[i"]=n

M
:Tzillli/‘ss"i’ - yzillls“i’ + VzifZ(iL-ﬁ-lﬂ#(i‘i{G
k=1

Sy il +rZif§: (114, ] T30 19a]

=t (W=D S+ S -y 1]
Fy [ =S (-2 1g -y Y il
+rZifk§ (1849 i ]+ > G- 1Sy i |
+ry [181g 5 |-t 1]

-7 [l'S“l] +T [l'S“] —2y[|'|"]
+y[|'|”l] fy[|'|”|] +T [|§|”] 4T [§|”]

-t [|'S“|] 41 [l's“] 72y[|'|”] +1 [|§|“] 4T [él”} .
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