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Abstract Over the years numerous models ofSIS (susceptible→ infected→ sus-
ceptible) disease dynamics unfolding on networks have beenproposed. Here, we dis-
cuss the links between many of these models and how they can beviewed as more
general motif-based models. We illustrate how the different models can be derived
from one another and, where this is not possible, discuss extensions to established
models that enables this derivation. We also derive a general result for the exact dif-
ferential equations for the expected number of an arbitrarymotif directly from the
Kolmogorov/master equations and conclude with a comparison of the performance
of the different closed systems of equations on networks of varying structure.
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1 Introduction

Modeling the spread of infectious diseases requires an understanding of not only
disease characteristics but also an understanding of the community (be it a hospi-
tal, school, town, etc) in which it pervades. An important consideration in modelling
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the spread of diseases is thus the contact structure on whichdisease transmission hap-
pens. Whereas traditional approaches ([2,5]) assume littleor no topological structure,
recent work ([13–15]) has tried to incorportate the underlying linkages between en-
tities in the population and study how these links facilitate the spread of the disease.
For a continuous-time stochastic disease transmission model on an arbitrary network
it is possible ([11]), to write down the relevant Kolmogorov/master equations and
thus model it as a continuous time Markov chain that fully describes the movement
between all possible system states. Unfortunately the complexity of the model comes
from the size of the state space and the number of equations scales exponentially as
aN , wherea is the number of different states a node can be in andN is the network
size. One widely used resolution to this complexity is to create individual-based sim-
ulation models and investigate the system behaviour directly. Even though increasing
computational power makes simulations an increasingly attractive proposition they
lack analytic tractability. Whilst this is not always a hindrance, when the system dis-
plays a rich range of behaviour (e.g. oscillations, bistability) it may not be feasable
to obtain a global overview of the effects of different parameter values and thus the
more analytic approach is needed. For this reason, low-dimensional systems of dif-
ferential equations ([13,6,15]) are sought provided that these can approximate the
exact solution. By reducing the problem to a smaller system of equations it is easier
to study the bifurcation structure of the model and gain a greater understanding of
the full spectrum of behaviour. The challenge is then findingthe set of equations that
best approximate the solution of the Kolmogorov equations.

Given that here we focus on epidemic models, usually such models are formu-
lated in terms of the expected values of the number of infected and/or susceptible
individuals or some other motif in the network such as the expected number of in-
fected and/or susceptible individuals of different degrees (the number of connections
a node has). Such models range from classic meanfield [1] to pairwise [13], het-
erogenous pairwise [6], effective degree [15,16] and individual-level models [20] to
name a few. Whilst these models seem to use different approaches their derivation
is based on the same conceptual framework, namely they beginby choosing a base-
motif (e.g. a node, a link and the two nodes it connects, a nodeand all its links). These
base-motifs are then used to formulate equations for the different possible states that
they can achieve (e.g. for the expected number of motifs in different states or the
probability that a specified motif in the network is in a certain state). These equa-
tions generally involve not only the base-motif itself, butlarger or extended motifs of
which they are usually part of. These larger motifs in turn depend on more complex
motifs and a closure is needed in order to obtain a self-contained system of equations
of reasonable size. Importantly the base-motif determinesnot only the complexity
of the model (the larger the motif the greater the number of states it can be in) but
also how much of the network topology can be captured. Interestingly differential
equations for smaller motifs that are part of the base-motifshould, in theory, be re-
coverable from the original differential equation. To thisend the main focus of the
paper is the consideration of various simple models of disease dynamics and the rela-
tions between them. We also consider which models are derivable directly (subject to
a suitable closure) from the Kolmogorov/master equations and can thus be referred
to as exact.
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We begin in section 2 with an introduction of some of the more common ap-
proaches to modelling disease dynamics on networks, considering meanfield ([1]),
pairwise ([13]), heterogeneous pairwise ([6]) and the effective degree ([15]) model
formulations. In section 3 we formulate an exact version of the effective degree model
and then illustrate how the pairwise model can then be recovered from this new set of
equations. We are, however, unable to recover the heterogenous pairwise model from
the exact effective degree and this motivates, in section 4,an extension of this which
incorporates further network topology into the ODEs. From this extension we then
show how it is then possible to recover the heterogeneous pairwise equations. Once
the links between the models have been established, in section 5 we show how the
unclosed version of the models can be derived directly from the Kolmogorov equa-
tions. This is done by proving that as long as the heuristic equations for any motif are
written following a certain set of rules they will always be exact. We conclude, in sec-
tion 6 with a brief comparison of the models and discuss underwhat circumstances
they perform best, in the sense of being close to simulation results.

2 Models of disease dynamics

In this paper we focus on susceptible→ infected→ susceptible (SIS) disease dy-
namics on networks but note that all of the following models can be adapted for other
disease (e.g.SIR and/or contact tracing) or non-disease (e.g. evolutionary[8]) dynam-
ics. With this in mind we useτ as the per-link transmission rate between susceptible
and infected nodes andγ as the recovery rate of an infected individual. Both infection
and recovery are modelled as independent poisson processes. As a starting point we
give a short summary of ODE-based models that are either exact or an approximation
of the true dynamics resulting from the full system based on the Kolmogorov/master
equations, where these are solvable, or based on simulation.

2.1 Pairwise and the resulting simple compartmental model

In order to focus on the underlying network of contacts, we introduce the pairwise
model first ([13,19]). The main idea of this model is to develop the hierarchical de-
pendence of lower order moments (e.g. expected number of susceptible[S] and in-
fected[I] nodes) on higher ones (e.g. expected number of pairs with onesusceptible
and one infected node,[SI]) and to derive appropriate models that correctly account
for these. As already suggested, the expected number of pairs will depend on larger
motifs, in this case these being the expected number of triples denoted by[ABC],
whereA,B,C ∈ {S, I} andB is connected toA andC. Using this notation the equa-
tions governing the evolution of the disease dynamics at thelevel of singles and pairs
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are given by

d
dt

[I] =−γ [I]+ τ [SI] , (1)

d
dt

[SS] =−2τ [ISS]+2γ [IS], (2)

d
dt

[SI] = τ ([ISS]− [ISI]− [IS])+ γ ([II]− [IS]) , (3)

d
dt

[II] = 2τ ([ISI]+ [IS])−2γ [II]. (4)

Importantly we note that these equations are unclosed as no equations are given for
the evolution of the triples. The standard closure (in the absence of clustering) makes
the assumption that the status of pairs are statistically independent of one another and
then

[ABC]≈[AB](n−1)
[BC]

n[B]
,

wheren is the average degree of the network. When we use this closure we say we
have closed “at the level of triples” . In order to derive the classic mean-field model a
closure at the level of paris can be applied, namely,[SI] can be approximated as

[SI]≈ n[S]
[I]
N

and upon using Eq. (1), the classic mean-field model can be recovered

d
dt

[I] =−γ [I]+ τn [S]
[I]
N
, (5)

where the widely used transmission rate from the compartmental model,[1], isβ =
τn.

It is also important to note that the unclosed equations above (Eqs. (1-4)) can be
derived directly from the state-based Kolmogorov equations and for this reason we
refer to these equations as exact. Whilst a proof for the exactness of these equations
was given in [21], in section 5 we provide a more general proofthat allows us to
write down exact equations for, not just pairs, but any motifstructure. We also note
that an alternative approach was used by Sharkey in [20], to prove that the standard
pairwise equations were exact for models with susceptible→ infected→ recovered
(SIR) disease dynamics.

2.2 Heterogeneous pairwise model

Whilst the pairwise equations perform well in capturing disease dynamics on net-
works that are well described by their average degree, the closure assumption fails
when greater heterogeneity is introduced. More precisely,whilst the pairwise equa-
tions above are exact for an arbitrary network before a closure, these do not guarantee
that with the current choice of singles and pairs (i.e.[S] could be further divided to
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account for heterogeneity in degree) a valid closure could be found for any network.
Indeed, to account for greater heterogeneity Eameset al. [6] further developed the
pairwise model by taking into account not just the state of nodes and pairs but also
the degrees of the nodes. By using[An] to represent expected number of nodes of
typeA with degreen and with similar notation for pairs and triples, they were able to
formulate the following set of unclosed equations

d
dt

[Sn] = γ [In]− τ
∑

q

[SnIq], (6)

d
dt

[In] =−γ [In]+ τ
∑

q

[SnIq], (7)

d
dt

[SnSm] =−τ
∑

q

([SnSmIq]+ [IqSnSm])+ γ ([SnIm]+ [InSm]) , (8)

d
dt

[SnIm] = τ
∑

q

([SnSmIq]− [IqSnIm])− τ [SnIm]− γ [SnIm]+ γ [InIm] , (9)

d
dt

[InIm] = τ
∑

q

([InSmIq]+ [IqSnIm])+ τ [InSm]+ τ [SnIm]−2γ [InIm] . (10)

Again assuming the statistical independence of pairs and absence of clustering, Eames
et. al, [6], suggest the following approximations of triples

[BnCmDp]≈[BnCm](m−1)
[CmDp]

m[Cm]
.

2.3 The effective degree model

In [15], Lindquist et al. introduced the effective degree model forSIS (and also
SIR) dynamics on a network (an equivalent model formulation wasalso proposed
by Marceau et al. [16]). In this model they consider not only the state of a node (S or
I), but also the number of the immediate neighbours in the various potential states.
This is done by writing the following set of equations for allthe possible star-like
motifs in the network whereSs,i (Is,i) represents the expected number of susceptible
(infected) nodes withs susceptible andi infected neighbours,

˙Ss,i =− τiSs,i + γIs,i + γ [(i+1)Ss−1,i+1− iSs,i]

+ τ
∑M

k=1

∑

j+l=k jlS j,l
∑M

k=1

∑

j+l=k jS j,l
[(s+1)Ss+1,i−1− sSs,i], (11)

˙Is,i =τiSs,i − γIs,i + γ [(i+1)Is−1,i+1− iIs,i]

+ τ
∑M

k=1

∑

j+l=k l2S j,l
∑M

k=1

∑

j+l=k jI j,l
[(s+1)Is+1,i−1− sIs,i], (12)
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with 1≤ s+ i ≤ M, whereM is the maximum degree and the equations are suitably
adjusted on the boundaries. It is important to note that thismodel is not exact as a
closure has been already applied. Namely the infection of a node’s susceptible neigh-
bours is based on a population-level approximation. To illustrate this more precisely
we borrow the notation of the pairwise model and make two observations

∑M
k=1

∑

j+l=k jlS j,l
∑M

k=1

∑

j+l=k jS j,l
=

[ISS]
[SS]

,

∑M
k=1

∑

j+l=k l2S j,l
∑M

k=1

∑

j+l=k jI j,l
=

∑M
k=1

∑

j+l=k l(l −1)S j,l + lS j,l
∑M

k=1

∑

j+l=k jI j,l
=

[ISI]+ [SI]
[SI]

=
[ISI]
[SI]

+1.

These means that the infection pressure on the susceptible neighbours of the central
node is equal to the population level average taken from all the possible star-like con-
figurations rather then from the extended star structures that would account exactly
for these infections.

3 Recovering the pairwise model from the effective degree

Whilst the pairwise and effective degree models seem different they are based on a
similar approach. Both models work on approximating the evolution of different mo-
tifs in the network; individuals and links in the pairwise model and star-like structures
in the effective degree. For both models, but more clearly for the pairwise, the mod-
els begin with a starting or base motif (e.g. nodes) for whichan evolution equation is
required. This will of course depend on an extended motif, typically the base motif
extended by the addition of an extra node (e.g. pairs). This dependency on higher
order motifs continues, for example, with pairs depending on triples, and then triples
depending on quadruplets (four nodes connected by a line, i.e.A−B−C−D, or a star

with a centre and three spokes, i.e.A−B−C D). Hence, the models only differ in
the choice of the base motif and then potentially in the way inwhich the systems are
closed to curtail the dependency on higher order motifs. Since, here we are mainly
interested in exact models, that is before a closure is applied, we begin by conjectur-
ing an exact version of the effective degree model and show how starting from this
the exact pairwise model can be derived.

3.1 Exact effective degree

Based on the ideas presented above, we extend the star-like base motif to reveal the
dependence on higher order motifs and conjecture that this unclosed version of the
effective degree model is exact. We begin by introducing a variable to count the ex-
pected number of infecteds connected to a node’s susceptible neighbours. This is
done by introducing two new terms,[ISSs′,i′ ] and[ISIs′,i′ ]. For the term[ISIs′,i′ ] (and
similarly for [ISSs′,i′ ]) theS in the middle is actually used to represent the susceptible
neighbours of the centralI from the motif with compositionIs′i′ (i.e. theI node with



Interdependency and hierarchy of exact and approximate epidemic models on networks 7

neighbourhood(s′, i′) is the centre of the star, whileS is a susceptible spoke). TheI
(on the left-hand side), in turn, represents the infective neighbours of these suscep-
tibles’ and within this count, in the case of[ISIs′,i′ ], we also include the originating
centralI. The exact effective degree model can then be written as

˙Ss,i =− τiSs,i + γIs,i + γ [(i+1)Ss−1,i+1− iSs,i]

+ τ [ISSs+1,i−1]− τ [ISSs,i] , (13)

˙Is,i =τiSs,i − γIs,i + γ [(i+1)Is−1,i+1− iIs,i]

+ τ [ISIs+1,i−1]− τ [ISIs,i] . (14)

Fig. 1 shows the possible transitions captured by this model.

Recovery of an infectious neighbour

Infection of the central node

External infection of a neighbour

Recovery of the central node

Recovery of an infectious neighbour

External infection of a neighbour

−βiSsi

γIsi

γ(i+ 1)Ss−1,i+1

−γiSsi

β [ISSs+1,i−1]

−β [ISSs,i]

Fig. 1 Illustration of the transitions into and out of theS2,1 class. Susceptible nodes are given in blue
and infective nodes in red. Transitions into the class are shown in grey and transitions out in green. The
corresponding terms of the general equation are also given.

3.2 Recovering the pairwise equations

The star-like composition of the effective degree model allows us to recover the pair-
wise equations via careful summations. The full derivationof the pairwise model is
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given in Appendix 1, whilst here we only illustrate the derivation of the individuals
(trivial but given for completeness) and the [II] pairs,

d
dt

[S] =
∑

s,i

˙Ss,i = γ [I]− τ [SI] ,

d
dt

[I] =
∑

s,i

˙Is,i =−γ [I]+ τ [SI] ,

where most terms from the original effective degree equations cancel and we have
used that

∑

s,i iSs,i = [SI] and
∑

s,i Is,i = [I]. For [II] the following equality holds

d
dt

[II] =
∑

s,i

i ˙Is,i

=τ
∑

i2Ss,i − γ
∑

iIs,i + γ
∑

i(i+1)Is−1,i+1− γ
∑

i2Is,i

+ τ
∑

i[ISIs+1,i−1]− τ
∑

i[ISIs,i]

=τ
∑

i(i−1)Ss,i + τ
∑

iSs,i − γ [II]

+ γ [III]− γ
∑

i(i−1)Is,i − γ
∑

iIs,i

+ τ
∑

(i−1)[ISIs+1,i−1]+ τ
∑

[ISIs+1,i−1]− τ
∑

i[ISIs,i]

=τ [ISI]+ τ [IS]− γ [II]+ γ [III]− γ [III]− γ [II]+ τ [ISI]+ τ[IS]

=2τ ([ISI]+ [IS])−2γ [II],

where we have used that
∑

s,i iIsi = [II],
∑

s,i (i−1)[ISIs+1,i−1] =
∑

i[ISIs,i] and that
∑

[ISIs+1,i−1] = [ISI] + [SI]. These all follow from the definition of the pairwise
model and the definition of the new extended motifs from the exact effective degree
model. We note that this result does indeed correspond to that of the given pairwise
model.

4 Higher order models

Whilst we can recover the pairwise equations from the exact effective degree model
we note that the same is not possible with the heterogeneous pairwise equations. This
motivates an extension of the effective degree model where the degrees of neighbour-
ing nodes are also taken in to account. Again we conjecture that this model can, in
theory, be derived from the exact Kolmogorov equations and thus refer to it as exact.
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4.1 Exact effective degree with neighbourhood composition

We extend the exact effective degree model to include the number of neighbours of
the central nodes’ neighbours. We begin by defining the following notation

s′ = (s1,s2, . . . ,sM),

i′ = (i1, i2, . . . , iM),

|s′|= s1+ s2+ . . .+ sM,

|i′|= i1+ i2+ . . .+ iM,

wheres j (i j) represents the number of susceptible (infective) neighbours of degreej.
We now defineSs′i′ , (Is′i′) as the number of susceptible (infective) nodes with neigh-
bouring nodes whose own degrees are given by the entries ins′ andi′. We can now
write the extended ODEs in the following form

˙Ss,′i′ =− τ |i′|Ss,′i′ + γIs′,i′ + γ
M
∑

k=1

(i′k +1)Ss′k−,i
′
k+
− γ |i′|Ss′,i′

+ τ
M
∑

k=1

[

ISkSs′k+,i
′
k−

]

− τ
[

ISSs′,i′
]

, (15)

˙Is′,i′ =τ |i′|Ss′,i′ − γIs′,i′ + γ
M
∑

k=1

(i′k +1)Is′k−,i
′
k+
− γ |i′|Is′,i′

+ τ
M
∑

k=1

[

ISkIs′k+,i
′
k−

]

− τ
[

ISIs′,i′
]

. (16)

Heres′k− = (s1,s2, . . . ,sk −1, . . . ,sM) ands′k+ = (s1,s2, . . . ,sk +1, . . . ,sM) with a sim-
ilar definition fori′k− andi′k+. With a small modification to the exact effective degree

notation terms such as
[

ISkSs′k+,i
′
k−

]

are taken to represent number of infectious con-

tacts of the susceptible neighbours of degreek.

4.2 Model recovery

Here we show how, from the extended effective degree model, we can recover the
heterogenous pairwise model. It is also straightforward toshow, and thus omitted
here, that the extended effective degree leads to the simpler exact effective degree.
In turn, it also follows easily that both the exact effectivedegree and heterogenous
pairwise models reduce to the standard pairwise model. Thishierarchy of recovery is
illustrated in Fig. 2.

4.2.1 Recovering the heterogeneous pairwise model from the extended effective
degree

As earlier we make use of careful summation to recover the model. The full derivation
is provided in Appendix 2 so here we just provide the derivation at the individual level
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and of the [IlIn] pairs. For singles the following identities hold,

d
dt

[Sn] =
∑

|s′|+|i′|=n

˙Ss′,i′ = γ [In]− τ [SnI] ,

d
dt

[In] =
∑

|s′|+|i′|=n

˙Is′,i′ =−γ [In]+ τ [SnI] ,

where most terms from the original effective degree cancel and we have used that
∑

|s′|+|i′|=n

Is′,i′ = [In] and
∑

|s′|+|i′|=n

|i′|Ss′,i′ = [SnI].

For the[IlIn] pair we obtain

d
dt

[

IlIn
]

=
∑

|s′|+|i′|=n

i′l ˙Is′,i′

=τ
∑

i′l |i
′|Ss′,i′ − γ

∑

i′lIs′,i′ + γ
∑

i′l

M
∑

k=1

(i′k +1)Is′k−i′k+

− γ
∑

i′l |i
′|Is′,i′ + τ

∑

i′l

M
∑

k=1

[

ISkIs′k+,i
′
k−

]

− τ
∑

i′l
[

ISIs′,i′
]

=τ
∑

i′l
(

|i′|−1
)

Ss′,i′ + τ
∑

i′lSs′,i′ − γ
[

IlIn
]

+ γ
[

IlInI
]

− γ
∑

i′l
(

|i′|−1
)

Is′,i′ − γ
∑

i′lIs′,i′

+ τ
∑

i′l
∑

k 6=l

[

ISkIs′k+,i
′
k−

]

+ τ
∑

(

i′l −1
)

[

ISlIs′l+,i
′
l−

]

+ τ
∑

[

ISlIs′l+,i
′
l−

]

− τ
∑

i′l
[

ISIs′,i′
]

=τ
[

IlSnI
]

+ τ
[

IlSn
]

−2γ
[

IlIn
]

+ γ
[

IlInI
]

− γ
[

IlInI
]

+ τ
[

ISlIn
]

+ τ
[

SlIn
]

=τ
[

IlSnI
]

+ τ
[

IlSn
]

−2γ
[

IlIn
]

+ τ
[

ISlIn
]

+ τ
[

SlIn
]

=τ
∑

q

([

IlSnIq
]

+[IqSnIm]
)

+ τ
[

IlSn
]

+ τ
[

SlIn
]

−2γ
[

IlIn
]

.

Again, we note that this result corresponds to previously given heterogenous pairwise
model.

5 Exactness of the models

In the previous sections we have at times referred to a set of ODEs as being exact.
This terminology implies that the ODEs can be derived directly from the Kolmogorov
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(a) Extended effective degree

(c) Heterogeneous pairwise(b) Effective Degree

(d) Pairwise

Fig. 2 Illustration of the hierarchial structure of model recovery. Links that are known are given by lines
and knowledge of a nodes status is given by circles. The upperlevel (a) represents the extended effective
degree ODEs. The status of the central node is known along with that of it’s neighbours and also their
degrees. The secondary level is given by (b), the effective degree model where there is no knowledge of
neighbours’ degrees and (c), the heterogenous pairwise model where the number of pairs of nodes and
their relative degree is know. The final level shown, (d), is known as the standard pairwise model, [13],
where the status of individual nodes and pairs is used.

equations which describe the evolution of the epidemic through the full state spaceS
(on a network of sizeN, S = {S, I}N). In [21] the exactness of the pairwise equations
was rigorously proven but no other motif structures were considered. In section 3.1,
we conjectured that the newly defined exact effective degreemodel is derivable from
the Kolmogorov equations. Due to the structure of the motifsused in the effective
degree model a mechanistic proof (as in [21]) may be difficultand intricate to imple-
ment. Instead we will prove that a heuristic formulation of the ODEs for any motif
structure is indeed exact providing they are written following rigorous bookkeeping
This derivation of the evolution equations for an arbitrarymotif, directly from the
Kolmogorv equations, will be based on an extension of ideas presented in [11] and
[21] and using the notation defined in Table 1.

We should note that in what follows a motif of connected nodeswill only ever
be counted once. In a network of sizeN and in a motif,m, with k nodes this singular
counting can be understood in the following way. We considereach of the

(N
k

)

unique
sets ofk nodes between 1 andN. Then for each set whose nodes are isomorphic
in topological structure and status to the motifm, we simply increase the counter
of such motifs by one. This formalism is unlike that used in the standard pairwise
model where anSS link would contribute a value of two to the[SS] count. However,
the two resultant sets of equations are equivalent in the sense that the different ways
of counting can easily be recovered by using a simple mappingbetween the two. For
this reason, whilst we prove that the following theorem is correct, it’s intricacy and
generality means a certain amount of care is needed when interpreting the resultant
terms. Table 2 summarises the additional notation needed for the newly introduced
motif approach. The result for a general motif is given in thefollowing theorem.
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Table 1 Notation for matrix representation of the Kolmogorov equations (Table from [21]).

Variable Definition

N Number of nodes in the network

G = (gi j) ∈ {0,1}N2
, i, j = 1,2, . . . ,N Adjacency matrix withgi j = 1 if nodesi and j are con-

nected andgi j = 0 otherwise. The network is bi-directional
and has no self loops such thatG = GT andGii = 0,∀ i.

τ Rate of infection per (S, I) edge.

γ Rate of recovery.

S = {S, I}N State space of the network, with nodes either susceptible,
S, or infected,I and|S| = 2N .

Sk = {Sk
1,S

k
2, . . . ,S

k
ck
} Theck =

(N
k

)

states withk infected individuals in all pos-
sible configurations, withk = 0,1, . . . ,N.

Xk
j (t) Probability of being in stateSk

j at time t, where k =
0,1, . . . ,N and j = 1,2, . . . ,ck.

Xk(t) Xk(t) =
(

Xk
1(t),X

k
2(t), . . . ,X

k
ck
(t)

)T
.

Ak
i, j Rate of transition fromSk−1

j to Sk
i , wherek = 0,1, . . . ,N,

i = 1,2, . . . ,ck and j = 1,2, . . . ,ck−1 . Note that only one
individual is changing (i.e. in this case anS node changes
to anI through infection).

Ck
i, j Rate of transition fromSk+1

j to Sk
j , wherek = 0,1, . . . ,N,

i = 1,2, . . . ,ck and j = 1,2, . . . ,ck+1. Note that only one
individual is changing (i.e. in this case anI node changes
to anS through infection).

Bk
i, j Rate of transition out ofSk

j , whereBk
i, j = 0 if i 6= j with

k = 0,1, . . . ,N andi, j = 1,2, . . . ,ck.

Theorem 1 The equation for the expected number (|M|) of motifs of type m̂, given
by

˙|M|=τN SI
in (m̂

−, m̂)+ τN SI
ex (m̂

−, m̂)− τ |M|NSI
in (m̂)− τN SI

ex (m̂)

+ γN I(m̂+, m̂)− γ |M|NI(m̂) (17)

is derivable directly from the exact Kolmogorov equations.

5.1 Proof of Theorem 1

For a detailed description of writing the Kolmogorov equations for an arbitrary graph
we refer the reader to [11]. Here we only provide a brief description making use
of the notation defined in Table 1 to allow us to illustrate theproof. SettingX =
(X1,X2, . . . ,XN)T , the epidemic evolution through the state space is given by

Ẋ = PX , (18)
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Table 2 Additional notation for matrix representation of the Kolmogorov equations

Variable Definition

m̂ An arbitrary motif encompassing both topology and status of nodes (e.g.
anS− I edge or a star like structure such asI3,0). The arbitrary motif we
are consdering which will encompass both topology and statusof nodes.

m̂+ Represents the different motifs with the same structure as ˆm but with a
susceptible node of ˆm having become infected.

m̂− Represents the different motifs with the same structure as ˆm but with with
an infective node of ˆm having become susceptible.

Mk, j Set ofm̂ motifs in configuration stateSk
j . Defining theith element ofMk, j

asm̂i
k, j givesMk, j = {m̂1

k, j, m̂
2
k, j, . . . , m̂

|M|
k, j }.

M+
k, j The set of motifs, in configuration stateSk

j , with the same topology as ˆm

but with 1 more infective and 1 less susceptible. Defining theith element

of M+
k, j asm̂i+

k, j givesM+
k, j = {m̂1+

k, j , m̂
2+
k, j , . . . , m̂

|M+
k, j |+

k, j }.

M−
k, j The set of motifs, in configuration stateSk

j , with the same topology as ˆm

but with 1 less infective and 1 more susceptible. Defining theith element

of M−
k, j asm̂i−

k, j we haveM−
k, j = {m̂1−

k, j , m̂
2−
k, j , . . . , m̂

|M−
k, j |−

k, j }.

Nm̂(S
k
j ) Number ofm̂ motifs in stateSk

j , with k = 0,1, . . . ,N and j = 1,2, . . . ,ck.

NSI
in (ĥ) Number ofSI links within the motifĥ.

N SI
in (ĥ) Expected total number ofSI links within all motifs of typeĥ

NSI
in (ĥ,k) Number ofSI links within the motifĥ, along which, were an infection to

occur, would result in a motif of typek.

N SI
in (ĥ,k) Expected total number ofSI links within all motifs of typeĥ, along which,

were an infection to occur, would result in a motif of typek.

NSI
ex (ĥ) Number ofSI links where theS is contained within the motif̂h and theI is

external to it.

N SI
ex (ĥ) Expected total number ofSI links to all motifs with structurêh, where the

S is contained within the motif̂h and theI external to it.

NSI
ex (ĥ,k) Number ofSI links where theS is contained within the motif̂h and theI

is external to it, along which, were an infection to occur, would result in a
motif of typek.

N SI
ex (ĥ,k) Expected total number ofSI links to all motifs with structurêh, where the

S is contained within the motif̂h and theI external to it, along which, were
an infection to occur, would result in a motif of typek.

NI(ĥ) Number ofI nodes within motif̂h.

NI(ĥ,k) Number ofI nodes within motif̂h, whose recovery lead to a motif of type
k.

N I(ĥ,k) Expected total number ofIs within motifs of typeĥ, whose recovery lead
to a motif of typek.
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where

P =

















B0 C0 0 0 0 0
A1 B1 C1 0 0 0
0 A2 B2 C2 0 0
0 0 A3 B3 C3 0
0 0 . . . . . . . . . 0
0 0 0 0 AN BN

















.

We now have the following equations for the state space probabilities.

Ẋ0 = B0X0+C0X1,

Ẋk = AkXk−1+BkXk +CkXk+1 for k = 1. . .(N −1),

ẊN = ANXN−1+BNXN .

From [11], we also know that the entries of the matrixB are zero except on the
diagonals, where we find that

Bk
j j =−

ck+1
∑

i=1

Ak+1
i, j −

ck−1
∑

i=1

Ck−1
i, j

=−τNSI(S
k
j)− kγ . (19)

Where [11] focussed on individual and edge motifs here we focus on the derivation
of evolution equations for the expected number of and arbitrary motif, m̂. We begin
by writing the exact equations for an arbitrary motif ˆm based on the transition and
recovery matrices. This yields,

˙|M|=
N
∑

k=0

Nm̂(S
k)Ẋk

=Nm̂(S
0)
[

B0X0+C0X1]

+

N−1
∑

k=1

Nm̂(S
k)
[

AkXk−1+BkXk +CkXk+1
]

+Nm̂(S
N)

[

ANXN−1+BNXN]

=

N
∑

k=1

Nm̂(S
k)AkXk−1+

N
∑

k=0

Nm̂(S
k)BkXk +

N−1
∑

k=0

Nm̂(S
k)CkXk+1

=
N−1
∑

k=0

Nm̂(S
k+1)Ak+1Xk +

N
∑

k=0

Nm̂(S
k)BkXk +

N
∑

k=1

Nm̂(S
k−1)Ck−1Xk

=
[

Nm̂(S
1)A1+Nm̂(S

0)B0]X0

+

N−1
∑

k=1

[

Nm̂(S
k+1)Ak+1+Nm̂(S

k)Bk +Nm̂(S
k−1)Ck−1

]

Xk

+
[

Nm̂(S
N)BN +Nm̂(S

N−1)CN−1]XN . (20)
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Before continuing we note the following

BN = BN
1,1 =−

N
∑

i=1

CN−1
i,1 =−γN,

B0 = B0
1,1 =−

N
∑

i=1

A1
i,1 =−τNSI(S

0
1) = 0.

Taking these and (19) into account and using the fact thatB is only none zero on it’s
diagonal, we then obtain the following equation,

˙|M|=Nm̂(S
1)A1X0

+

N−1
∑

k=1

[

Nm̂(S
k+1)Ak+1− τ

(

Nm̂(S
k)∗NSI(S

k)
)

− γkNm̂(S
k) +Nm̂(S

k−1)Ck−1 ]Xk

+
[

Nm̂(S
N−1)CN−1− γNNm̂(S

N)
]

XN

=

N−1
∑

k=1

[

Nm̂(S
k+1)Ak+1− τ

(

Nm̂(S
k)∗NSI(S

k)
)]

Xk −
N
∑

k=1

[

γkNm̂(S
k)−Nm̂(S

k−1)Ck−1
]

Xk.

(21)
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We note that the term containingX0 vanishes becauseA1 is a column vector with all
zero entries. We now consider the summations involving theA andC matrices:

[

Nm̂(S
k+1)Ak+1

]

j
=

ck+1
∑

i=1

Nm̂(S
k+1
i )Ak+1

i, j

=r1τ
[

Nm̂(S
k
j)+(number ofm̂ gained by node 1 becoming infected)

−(number ofm̂ lost by node 1 becoming infected)]

+r2τ
[

Nm̂(S
k
j)+(number ofm̂ gained by node 2 becoming infected)

−(number ofm̂ lost by node 2 becoming infected)]

+ . . .

+rN−kτ
[

Nm̂(S
k
j)+(number ofm̂ gained by node(N − k) becoming infected)

−(number ofm̂ lost by node(N − k) becoming infected)]

=r1τ
[

Nm̂(S
k
j)+(number of elements ofM−

k, j where node 1 is susceptible

and where node 1′s infection would lead to a motif of type ˆm)

−(number of elements ofMk, j where node 1 is susceptible)
]

+r2τ
[

Nm̂(S
k
j)+(number of elements ofM−

k, j where node 2 is susceptible

and where node 2′s infection would lead to a motif of type ˆm)

−(number of elements ofMk, j where node 2 is susceptible)
]

+ . . .

+rN−kτ
[

Nm̂(S
k
j)+(number of elements ofM−

k, j where node(N − k) is susceptible

and where node(N − k)′s infection would lead to a motif of type ˆm)

−(number of elements ofMk, j where node(N − k) is susceptible)
]

,

grouping the terms we obtain,

[

Nm̂(S
k+1)Ak+1

]

j
=τNSI(S

k
j)Nm̂(S

k
j)+ τ

|M−
k, j |

∑

i=1

[

NSI
in (m̂

i−
k, j, m̂)+NSI

ex (m̂
i−
k, j, m̂)

]

−τ |Mk, j|N
SI
in (m̂)− τ

|Mk, j |
∑

i=1

[

NSI
ex (m̂

i
k, j)

]

.
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Similarly,

[

Nm̂(S
k−1)Ck−1

]

j
=

ck−1
∑

i=1

Nm̂(S
k−1
i )Ck−1

i, j

=γ
[

Nm̂(S
k
j)+(number ofm̂ gained by node(N − k+1) recovering)

−(number ofm̂ lost by node(N − k+1) recovering)]

+γ
[

Nm̂(S
k
j)+(number ofm̂ gained by node(N − k+2) recovering)

−(number ofm̂ lost by node(N − k+2) recovering)]

+ . . .

+γ
[

Nm̂(S
k
j)+(number ofm̂ gained by node(N) recovering)

−(number ofm̂ lost by node(N) recovering)]

=γ
[

Nm̂(S
k
j)+(number of elements ofM+

k, j where node(N − k+1) is infective

and where node(N − k+1)′s recovery would lead to a motif of type ˆm)

−(number of elements ofMk, j of which node(N − k+1) belongs)
]

+γ
[

Nm̂(S
k
j)+(number of elements ofM+

k, j where node(N − k+2) is infective

and where node(N − k+2)′s recovery lead to a motif of type ˆm)

−(number of elements ofMk, j of which node(N − k+2) belongs)
]

+ . . .

+γ
[

Nm̂(S
k
j)+(number of elements ofM+

k, j where node(N) is infective

and where nodeN′s recovery would lead to a motif of type ˆm)

−(number of elements ofMk, j of which node(N) belongs)
]

,

grouping the terms we obtain

[

Nm̂(S
k−1)Ck−1

]

j
=γkNm̂(S

k
j)+ γ

|M+
k, j |

∑

i=1

NI(m̂i+
k, j, m̂)− γ |Mk, j|

(

NI(m̂)
)

.

Defining

Ak+1
j = τ

|M−
k, j |

∑

i=1

[

NSI
in (m̂

i−
k, j, m̂)+NSI

ex (m̂
i−
k, j, m̂)

]

− τ |Mk, j|N
SI
in (m̂)− τ

|Mk, j |
∑

i=1

[

NSI
ex (m̂

i
k, j)

]

Ck−1
j = γ

|M+
k, j |

∑

i=1

[

NI(m̂i+
k, j, m̂)

]

− γ |Mk, j|
(

NI(m̂)
)
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and settingAk+1 = [Ak+1
1 ,Ak+1

j , . . . ,Ak+1
ck

] andCk−1 = [Ck−1
1 ,Ck−1

j , . . . ,Ck−1
ck−1

] yields,

˙|M|=
N−1
∑

k=1

[

Nm̂(S
k+1)Ak+1− τ

(

Nm̂(S
K)∗NSI(S

k)
)]

Xk −
N
∑

k=1

[

γkNm̂(S
k)−Nm̂(S

k−1)Ck−1
]

Xk

=

N−1
∑

k=1

[

τ
(

Nm̂(S
K)∗NSI(S

k)
)

+Ak+1− τ
(

Nm̂(S
K)∗NSI(S

k)
)]

Xk−

N
∑

k=1

[

γkNm̂(S
k)−

(

kNm̂(S
k)+Ck−1

)]

Xk

=

N−1
∑

k=1

[

Ak+1
]

Xk +

N
∑

k=1

[

Ck−1
]

Xk

=

N−1
∑

k=1

ck
∑

j=1

Ak+1
j Xk

j +

N
∑

k=1

ck
∑

j=1

Ck−1
j Xk

j

=

N−1
∑

k=1

ck
∑

j=1











τ
|M−

k, j |
∑

i=1

[

NSI
in (m̂

i−
k, j, m̂)+NSI

ex (m̂
i−
k, j, m̂)

]

− τ |Mk, j|N
SI
in (m̂)− τ

|Mk, j |
∑

i=1

[

NSI
ex (m̂

i
k, j)

]











Xk
j

+

N
∑

k=1

ck
∑

j=1











γ
|M+

k, j |
∑

i=1

[

NI(m̂i+
k, j, m̂)

]

− γ |Mk, j|
(

NI(m̂)
)











Xk
j

=τN SI
in (m̂

−, m̂)+ τN SI
ex (m̂

−, m̂)− τ |M|NSI
in (m̂)− τN SI

ex (m̂)

+ γN I(m̂+, m̂)− γ |M|NI(m̂).

Which matches equation 17 from Theorem 1. ⊓⊔
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5.2 Proof that the conjectured exact effective degree modelis derivable from the
Kolmogorov equations

Letting m̂ be anSs,i-type motif from the effective degree model earlier and using
Theorem 1, we find that the exact equations can be written as

dSs,i

dt
=τN SI

in (m̂
−, m̂)+ τN SI

ex (m̂
−, m̂)− τ |M|NSI

in (m̂)− τN SI
ex (m̂)

+ γN I(m̂+, m̂)− γ |M|NI(m̂)

=τ × (the total expected number of SI connections withinSs+1,i−1-type motifs

where if infection occurs we obtain aSs,i-type motif)

+ τ × (the total expected number of SI connections where S lies within

Ss+1,i−1-type motifs and the I is external to the given motif

and where, were an infection to occur, we obtain aSs,i-type motif)

− τSs,i × (number of SI connections within an individualSs,i-type motifs)

− τ × (the total expected number of SI connections where S belongs to

Ss,i-type motifs and the I is external to the given motif)

+ γ × (the total expected number I’s withinSs−1,i+1-type andIs,i-type motifs

where there recovery would give aSs,i-type motif)

− γSs,i × (number of I within an individualSs,i-type motif)

=τ [ISSs+1,i−1]− τiSs,i − τ [ISSs,i]+ γIsi + γ(i+1)Ss−1,i+1− γiSs,i

which is indeed the conjectured exact equation forSs,i (similar derivation holds for
Is,i). To clarify the above derivation we note that a term such asτN SI

in (m̂
−, m̂) will

make no contribution to the resultant equation as there are no internalSI connections
within Ss−1,i+1-type motifs along which an infection would lead to anSs,i-type motif.
However other terms, such asτN SI

ex (m̂
−, m̂), have a direct correspondence with the

resultant output (in this case theτ [ISSs+1,i−1] term).

6 Comparison of the closed models

In comparing the models the obvious question to ask is when does one model perform
better than another, i.e. which model approximates better or more accurately the sim-
ulation results or the solution of the Kolmogorov/master equations where solvable.
As discussed earlier, the pairwise model is known to performwell on networks that
are well characterised by the average degree (i.e. regular random and Erd̋os-Ŕenyi
graphs). What is less known is under what circumstances do theheterogenous pair-
wise and effective degree models outperform one another.

To assess the performance of the three closed models we compared individual
simulations to the solutions of the ODE’s on four different types of undirected net-
work. Firstly we use regular random networks where all nodeshave the same number
of randomly chosen neighbours. Secondly, on an Erdős-Ŕenyi random network where
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the distribution of degrees converges to a Poisson distribution. Figure 3 plots simu-
lation results against the different solutions of the ODEs for these two networks. On
the regular network, whilst the two different pairwise models and the effective degree
offer an improvement in performance over the standard meanfield equations, there is
little to distinguish between the improved approaches. On the Erd̋os-Ŕenyi random
networks, the pairwise model improves on the meanfield modeland, in turn, the effec-
tive degree and heterogeneous pairwise models improve evenfurther on this. Again,
however, there is little to distinguish between effective degree and the heterogeneous
pairwise models.
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(a) Regular random
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(b) Erdos-Renyi

Fig. 3 ODE performance on different networks Each network is of sizeN = 500 and with disease
parameters given byγ = 1 andτ = 0.5. Average prevalence was calculated from individual simulations on
100 different networks. (a) Regular random network, each node having degree 7. (b) Erdős-Ŕenyi random
network with average degree 7.
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To investigate further we ran simulations on networks exhibiting greater hetero-
geneity. Firstly on a bimodal network generated by the configuration model algo-
rithm [18] and secondly on assortative bimodal networks generated by rewiring the
aforementioned bimodal networks according to the algorithm of Newman, [17]. The
results are illustrated in Figure 4. Whilst on random bimodalnetwork there is little
difference between heterogeneous pairwise and effective degree when assortativity
is added, there is a clear improvement in the performance of the heterogenous pair-
wise model over the effective degree. This performance benefit must, however, be
considered in terms of the model complexity given in table 3 (note in this tableM is
the maximum possible degree in the network and we given the minimum number of
equations needed to implement the ODEs).

Table 3 Complexity of closed ODEs

Model # equations complexity

meanfield 1 O(1)
pairwise 3 O(1)
effective degree M(M+3)−1 O(M2)
heterogeneous pairwise 2M(M+1)−1 O(M2)
Kolmogorov equations 2N O(2N)

A final comparison between the performance of the different closed models is to
look at their rate of convergence to the solution of the Kolmogorov equations on a
complete (fully connected) network. On a complete network it is possible (see [11])
to reduce the full system of 2N equations to justN + 1 equations. This allows us
to compare the true solution to the approximate solution of the meanfield, pairwise
(equivalent to heterogenous pairwise on a complete graph) and effective degree mod-
els. Interestingly we find that all three exhibitO(1/N) convergence, where although
both pairwise and effective degree bring an improvement on meanfield, the difference
between the convergence of the two is neglible and almost indecernible (see figure 5).

7 Discussion

In this paper we set out to achieve a greater understanding ofthe relation between
some of the more common approaches to modelling disease dynamics. In doing so
we conjectured an exact version of the effective degree model [15] and showed how
this model could be used to recover the pairwise model [13]. We then extended this
model to incorporate greater network structure and illustrated how, from this exten-
sion, we could then recover the heterogeneous pairwise model [6]. We then proved
that the conjectured exact effective degree model was indeed exact by proving that
a heuristic derivation of an ODE model for an arbitrary motifwas derivable directly
from the Kolmogorov equations and noting that the exact effective degree model was
just a particular case of this heuristic model. Finally we considered the performance
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(a) Bimodal
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(b) Assortative bimodal

Fig. 4 ODE performance on different networks Each network is of sizeN = 500 and with disease
parameters given byγ = 1 andτ = 0.5. Average prevalence was calculated from individual simulations
on 100 different networks. (a) Bimodal configuration model with 207 nodes of degree 4 and 293 nodes
of degree 10. (b) Assortative bimodal network, with same degree distribution as (c) but rewired to have
assortativity coefficientr ≈ 0.56.

of the different models on four different type of networks and have analysed numeri-
cally the rate of convergence to the lumped Kolmogorov equations on a complete net-
work. These comparisons suggest a performance hierarchy ofmodels as illustrated
in Figure 6 and it is worth noting that the performance benefitof the heterogenous
pairwise model on networks exhibiting susceptible→ infectious→ removed (SIR)
disease dynamics was also touched upon in [4].

Whilst we have shown how current models can be extended in a waythat can
capture more network topology, these extensions have a moretheoretical rather than
practical motivation as their added complexity makes them not only less tractable but
also more resource intensive in their solving, thus making the use of simulations more
of an attractive proposition. As the links between these models are better understood,
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Fig. 5 Convergence to exact solution on a complete graph.Absolute difference between the exact
steady state solution of the percentage of infected individuals and those calculated from three different
ODE models for 10 different network sizes and initial prevalence of 40 percent. Black triangles represent
meanfield, blue circles effective degree and red squares the pairwise equations. Linear lines of best fit are
also shown. This shows that the error(N) appears to be of O(1/N) as N tends to infinity.

future work will likely focus on the following three areas. Firstly, a more realistic
network will have a more clique-like structure. For examplean individual is likely
a member of a household in which he has regular contacts within and less regular
contacts outside. Being able to incorporate this householdstructure within epidemic
models is thus important in understanding the outbreak and necessary curtailment of
an infectious disease (see [3,9,22]). Secondly, a network of individuals is not well
represented by a static network. An individual may have regular contact with few
individuals but may create or break contacts with others in ways that a static network
representation cannot capture. For this reason it is important to take into consideration
not only the dynamics of the disease but also the dynamics of the network and how
the two impact on one another (see [7,12]). Thirdly, assuming we can write down
exact differential equations we have to close them in some way. Understanding the
performance of current, and also the derivation of new closures, is arguably the most
important task ahead as it is the closures that limit the performance of any system of
ODEs.
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K

HetPW

Pairwise

Effective Degree

Meanfield

Fig. 6 Model performance hierarchy.Model performance hierarchy based on our observations. HereK
represents the Kolmogorov equations and HetPW the heterogeneous pairwise equations.

Appendix 1

Derivation of the pairwise equation from the exact effective degree model for singles and pairs are as
follows,

d
dt

[S] =
∑

s,i

˙Ss,i = γ [I]− τ [SI] ,

d
dt

[I] =
∑

s,i

˙Is,i =−γ [I]+ τ [SI] ,

where most terms from the original effective degree equationscancel and we have used that
∑

s,i iSs,i = [SI]
and

∑

s,i Is,i = [I]. For the pairs the effective degree model yields,

d
dt

[SS] =
∑

s,i

sṠsi

=− τ
∑

siSs,i + γ
∑

sIs,i + γ
∑

s(i+1)Ss−1,i+1− γ
∑

isSs,i

+ τ
∑

s[ISSs+1,i−1]− τ
∑

s[ISSs,i]

=− τ[ISS]+ γ[IS]+ γ
∑

(s−1)(i+1)Ss−1,i+1+ γ
∑

(i+1)Ss−1,i+1

− γ[ISS]+ τ
∑

(s+1)[ISSs+1,i−1]− τ
∑

[ISSs+1,i−1]− τ
∑

s[ISSs,i]

=− τ[ISS]+ γ[IS]+ γ[ISS]+ γ[IS]− γ[ISS]− τ[ISS]

=−2τ[ISS]+2γ[IS],

d
dt

[SI] =
∑

s,i

sİsi

=τ
∑

siSs,i − γ
∑

sIs,i + γ
∑

s(i+1)Is−1,i+1− γ
∑

siIs,i

+ τ
∑

s[ISIs+1,i−1]− τ
∑

s[ISIs,i]

=τ[ISS]− γ[IS]+ γ
∑

(s−1)(i+1)Is−1,i+1+ γ
∑

(i+1)Is−1,i+1

− γ[IIS]+ τ
∑

(s+1)[ISIs+1,i−1]− τ
∑

[ISIs+1,i−1]− τ
∑

s[ISIs,i]

=τ[ISS]− γ[IS]+ γ[IIS]+ γ[II]− γ[IIS]− τ([ISI]+ [IS])

=τ ([ISS]− [ISI]− [IS])+ γ ([II]− [IS]) ,
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d
dt

[II] =
∑

s,i

iİsi

=τ
∑

i2Ss,i − γ
∑

iIs,i + γ
∑

i(i+1)Is−1,i+1− γ
∑

i2Is,i

+ τ
∑

i[ISIs+1,i−1]− τ
∑

i[ISIs,i]

=τ
∑

i(i−1)Ss,i + τ
∑

iSs,i − γ[II]

+ γ[III]− γ
∑

i(i−1)Is,i − γ
∑

iIs,i

+ τ
∑

(i−1)[ISIs+1,i−1]+ τ
∑

[ISIs+1,i−1]− τ
∑

i[ISIs,i]

=τ[ISI]+ τ[IS]− γ[II]+ γ[III]− γ[III]− γ[II]+ τ[ISI]+ τ[IS]

=2τ ([ISI]+ [IS])−2γ[II].

Appendix 2

Derivation of the heterogeneous pairwise equations from the effective degree with neighbourhood com-
position model with the neighbourhood composition model. For singles and pairs the following identities
hold,

d
dt

[Sn] =
∑

|s′ |+|i′|=N

˙Ss′,i′ = γ [In]− τ [SnI] ,

d
dt

[In] =
∑

|s′ |+|i′|=N

˙Is′,i′ =−γ [In]+ τ [SnI] ,

d
dt

[

SlSn
]

=
∑

|s′|+|i′|=n

s′l ˙Ss′ ,i′

=− τ
∑

s′l |i
′|Ss′,i′ + γ

∑

s′l Is′ ,i′ + γ
∑

s′l

M
∑

k=1

(i′k +1)Ss′k−,i
′
k+

− γ
∑

s′l |i
′|Ss′,i′ + τ

∑

s′l

M
∑

k=1

[

ISkSs′k+ ,i′k−

]

− τ
∑

s′l
[

ISSs′,i′
]

=− τ
[

ISnSl
]

+ γ
[

Sl In
]

+ γ
∑

s′l
∑

k 6=l

(i′k +1)Ss′k−,i
′
k+

γ
∑

(s′l −1)(i′l +1)Ss′l−,i′l+
+ γ

∑

(i′l +1)Ss′l−,i
′
l+1

− γ
[

ISnSl
]

+ τ
∑

s′l
∑

k 6=l

[

ISkSs′k+ ,i′k−

]

+ τ
∑

(s′l +1)
[

ISlSs′l+ ,i′l−

]

− τ
∑

[

ISlSs′l+ ,i′l−

]

− τ
∑

s′l
[

ISSs′,i′
]

=− τ
[

ISnSl
]

+ γ
[

Sl In
]

+ γ
[

SlSnI
]

+ γ
[

IlSn
]

− γ
[

ISnSl
]

− τ
[

ISlSn
]

=− τ
[

ISnSl
]

− τ
[

ISlSn
]

+ γ
[

Sl In
]

+ γ
[

IlSn
]

,
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d
dt

[

Sl In
]

=
∑

|s′ |+|i′|=n

s′l ˙Is′,i′

=τ
∑

s′l |i
′|Ss′,i′ − γ

∑

s′l Is′,i′ + γ
∑

s′l

M
∑

k=1

(i′k +1)Is′k−,i
′
k+

− γ
∑

s′l |i
′|Is′,i′ + τ

∑

s′l

M
∑

k=1

[

ISkIs′k+ ,i′k−

]

− τ
∑

s′l
[

ISIs′,i′
]

=τ
[

ISnSl
]

− γ
[

Sl In
]

+ γ
∑

s′l
∑

k 6=l

(i′k +1)Is′k−,i
′
k+

γ
∑

(s′l −1)(i′l +1)Is′l−,i
′
l+
+ γ

∑

(i′l +1)Is′l−,i
′
l+1

− γ
[

IInSl
]

+ τ
∑

s′l
∑

k 6=l

[

ISkIs′k+,i′k−

]

+ τ
∑

(s′l +1)
[

ISl Is′l+ ,i′l−

]

− τ
∑

[

ISl Is′l+,i′l−

]

− τ
∑

s′l
[

ISIs′ ,i′
]

=τ
[

ISnSl
]

− γ
[

Sl In
]

+ γ
[

SlInI
]

+ γ
[

IlIn
]

− γ
[

IInSl
]

− τ
[

ISl In
]

− τ
[

SlIn
]

=τ
[

ISnSl
]

− τ
[

ISlIn
]

− τ
[

Sl In
]

+ γ
[

Il In
]

− γ
[

Sl In
]

,

d
dt

[

Il In
]

=
∑

|s′ |+|i′|=n

i′l ˙Is′,i′

=τ
∑

i′l |i
′|Ss′,i′ − γ

∑

i′l Is′ ,i′ + γ
∑

i′l

M
∑

k=1

(i′k +1)Is′k−,i
′
k+

− γ
∑

i′l |i
′|Is′,i′ + τ

∑

i′l

M
∑

k=1

[

ISkIs′k+ ,i′k−

]

− τ
∑

i′l
[

ISIs′ ,i′
]

=τ
∑

i′l
(

|i′|−1
)

Ss′ ,i′ + τ
∑

i′lSs′ ,i′ − γ
[

Il In
]

+ γ
[

Il InI
]

− γ
∑

i′l
(

|i′|−1
)

Is′ ,i′ − γ
∑

i′l Is′ ,i′

+ τ
∑

i′l
∑

k 6=l

[

ISkIs′k+,i′k−

]

+ τ
∑

(

i′l −1
)

[

ISlIs′l+ ,i′l−

]

+ τ
∑

[

ISl Is′l+ ,i′l−

]

− τ
∑

i′l
[

ISIs′ ,i′
]

=τ
[

IlSnI
]

+ τ
[

IlSn
]

−2γ
[

Il In
]

+ γ
[

Il InI
]

− γ
[

Il InI
]

+ τ
[

ISl In
]

+ τ
[

Sl In
]

=τ
[

IlSnI
]

+ τ
[

IlSn
]

−2γ
[

Il In
]

+ τ
[

ISlIn
]

+ τ
[

Sl In
]

.
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