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In this paper, the rigorous linking of exact stochastic models to mean-field approximations is studied.
Using a continuous-time Markov chain, we start from the exact formulation of a simple epidemic model
on a certain class of networks, including completely connected and regular random graphs, and rigorously
derive the well-known mean-field approximation that is usually justified based on biological hypotheses.
We propose a unifying framework that incorporates and discusses the details of two existing proofs and
we put forward a new ordinary differential equation (ODE)-based proof. The more well-known proof is
based on a first-order partial differential equation approximation, while the other, more technical one,
uses Martingale and Semigroup theory. We present the main steps of both proofs to investigate their
applicability in different modelling contexts and to make these ideas more accessible to a broader group
of applied researchers. The main result of the paper is a new ODE-based proof that may serve as a
building block to prove similar convergence results for more complex networks. The new proof is based
on deriving a countable system of ODEs for the moments of a distribution of interest and proving a
perturbation theorem for this infinite system.

Keywords epidemic model; network; mean-field approximation; countable system of ODEs; Markov
chain

1. Introduction

Complex networks occur in a large variety of real-world systems ranging from ecology and epidemi-
ology to neuroscienceB@nsalet al,, 2007, Keeling & Eames2005 Sporns & Kotter, 2004). In most
applications, networks provide the backbone on which various dynamical processes unfold. For ex-
ample, infectious diseases transmit on intricate social networks, while neurons interact on non-trivial
weighted and dynamical graphs. This underpinned the rapid development of research that seeks to un-
derstand how the structure/topology of the network impacts on the behaviour of different dynamics on
networks Bansalet al, 2007 Keeling & Eames2005. The analysis of even the simplastnamics

on networkscan be challenging mathematically, and often, results are mainly simulation based. As a
result, research in this direction is fragmented into more theoretical work that explores the rigorous
link between exact stochastic models and their ordinary differential equation (ODE)-based mean-field
approximationsEthier & Kurtz, 2005 Kurtz, 197Q 1971, 1980, and work that mainly relies on sim-
ulation. While simulations can be straightforward to implement, the often large number of parameters
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makes the exploration of the possible behaviours difficult and generalization of simulation results is
rarely possible. In an effort to increase tractability and depart from a purely simulation-based approach,
various simple differential equation models have been proposed. These are all different from simple
mean-filed models, which operate on the homogenous random mixing assumption, in that they capture
non-trivial network features such as network heterogeneity, clustering or can accommodate dynamically
evolving networks. These models range from pairwise mod@el{ng 1999 Rand 1999 Satoet al.,

1994 Trapman 2007 van Baalen2000 and ODE-based heterogeneous mixing modeisget al,,

2006 Morenoet al, 2002 to probability function formalism\{olz & Meyers, 2007, 2009. However,

in almost all cases, the performance of these more sophisticated models is only tested by comparing
ODE-based results to pure simulation. Thus, the goodness of fit is mostly performed by numerical
and/or visual inspection without rigorous mathematical arguments. The major obstacle that precludes a
theoretical formalism for comparison is either due to not being able to derive the Kolmogorov equations
or, in the case where this is possible, these are intractable due to their sheer number.

The problem of rigourously linking exact stochastic models to mean-field approximations goes back
to the early work oKurtz (197Q 1971). Kurtz studied pure-jump density-dependent Markov processes
where apart from providing a method for the derivation of the mean-field model also used solid mathe-
matical arguments to prove the stochastic convergence of the exact to the mean-field model. His earlier
results Kurtz, 197Q 1977 relied on Trotter-type approximation theorems for operator semigroups.
Later on, the results were embedded in a more general context of Martingale TE#aer & Kurtz,

2005. These results have been cited and extensively used by modellers in areas such as ecology and
epidemiology to justify the validity of heuristically formulated mean-field models. The existence of sev-
eral approximation models, often derived based on different modelling intuitions and approaches, has
recently highlighted the need to try and unify these and test their performance against the exact stochas-
tic models House & Keeling2011). Some steps in this directions have been m&ad & Neal, 2008
Lindquistet al,, 2010, where authors clearly state the link between exact and mean-field models.

The present paper, in the case of a simpleSmodel and a suitable class of networks, including
completely connected and regular random graphs, proposes a unifying framework that incorporates and
discusses the details of two existing proofs and proposes a new ODE-based proof. This complements
and offers an alternative to the existing ones that are purely based on stochastic theory and partial
differential equation (PDE) arguments. The paper is organized as follows. In S@ctiom model is
formulated and we present the main result in general terms and discuss the three different approaches
used to prove the convergence of the exact stochastic to the mean-field model. In SewatBogive
the detailed proof based on PDE arguments, while in Sedtidhe proof based on stochastic theory
arguments is presented. Sect®oontains the new ODE-based approach, with pluses and minuses of
the three different models included in the final Section.

2. Model

Let us consider the simpl8| Stype dynamics on a graph witd nodes and assume that the structure
of the network allows us to determirids|, the number ofS| pairs, once the number of infected nodes
N is known. The simplest graph satisfying this assumption is the complete graph for W&ick) =

k(N — k) if Nj = k. In the case of an-regular random graph, the widely used approximation for the
number ofS1 pairs isNs|(K) = k(N — k)n/N if N; = k. Once theNg, (k) function is defined, then the
epidemic propagation on the graph can be described by a Markov chain with statésfage. .., N}.
Denoting byxk(t) the probability of findingk infectious nodes, the Kolmogorov equation (or master
equation) takes the form
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Xk = ak—1Xk—1 — bXk + Ckp1Xk+1, k=0,1,..., N, (2.1)
where
a =tNsi(k), =7k, bk=a+c ai1=0=cnt1. (2.2)

In the case of a complete graph, it is known that the mean-filed approximation is available only if
7 scales with IN, hencer = A/N is used, yieldinggxk = Sk(N — k)/N. In the case of an-regular
random graphax = nzk(N — k)/N and this can be written in the same form as for the complete graph
with # = nz. Therefore, in the following, we assume that the master equation takes theXdjrar(d

a = pk(N —K)/N, c=7yk, bk=a+c a1=0=cn1 (2.3)
Let us assume that initially the number of infected nodds.iF hus the initial condition to4.1) is
Xp(0) =1, x(0) =0 fork# ko, (2.4)

with the expected value of the number of infected nodes given by

N
(1) =D kx(t). (2.5)

k=0

Differentiating [I ] with respect to time and using the Kolmogorov equationsdgrone can derive
the following differential equation forl[]:

(i1 = 21811 -1, 26)

where [S1] is the expected value of the number 81-type edges. Equatior? ) cannot be used to
determine the expected valud Eince [SI] cannot be expressed in terms of.[However, the approxi-
mation

[SI~ Nsi([IT)

yields a self-contained differential equation the solution of which approxim&ies$n[the case of a
complete graph, this approximation takes the fogj[~ [ ][ | ], and for a homogeneous random graph,
itis[SI] ~ [Y][I]n/N. Substituting this approximation int@.6) and dividing byN, we introduce the
variablei (t) instead of [](t)/N. Then fori, the following simple differential equation holds (for both
cases, but with different meaning 6§

i =8i(1—i)—yi. (2.7)

This equation is known as the mean-field approximation of the original Kolmogorov equ2tipn (
It is well-known thati (t) is a good approximation of J(t)/N in the following sense.

THEOREM2.1 Ifi(0) =[1](0)/N, then for anyt > 0, we have

lim [']% =i).

N— o0
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In fact, the statement of the theorem is not rigorous in this form since the type of the convergence is
not specified and this will depend on the method of proof. There are basically two different methods of
proof and these yield different types of limits. The two main approaches use (a) first-order PDE and (b)
martingale and semigroup theory arguments.

The first-order PDE approach yields tha{{)/N tends toi (t) for any fixedt. This is the most
intuitive approach since it is based on the idea that for laigehe discrete distributiomx(t) can
be approximated by a continuous density function. The exact statement that can be proved by using
this method is presented in Theoréhl The main steps of the proof can be found in the Appendix
of Diekmann & Heesterbee000, however not all details of the rigorous mathematical proof are
presented there. IBimonet al. (2011, a rigorous proof is given and for sake of completeness, we
briefly summarize this in Sectioh

The stochastic approach yields that the stochastic variab)¢N (not the expected value) tends
stochastically ta (t). This implies that the expected valug({t)/N also tends ta(t). The statement is
formulated in exact terms in Theorednl. The theorem is proved in several different way&thier &

Kurtz (2005, Kurtz (197Q 1971). The first proof was based on a Trotter-type approximation theorem
for semigroups followed by a proof based on martingale theory. The prdéthier & Kurtz (2005,

which is valid in a general context, reduces the problem to the study of Poisson processes by using
the previously developed semigroup and martingale techniques. In Ségctienpresent the main steps

of the proof inEthier & Kurtz (2005 applied to our special setting. This enables the reader to follow
the main ideas of the stochastic proof without going into and understanding the technical details of the
original proof inEthier & Kurtz (2005.

The main purpose of this paper is to show a new ODE-based approach. We will call this an elemen-
tary approach since a self-contained proof of the theorem will be shown without using a combination
of highly specialist mathematical tools from different areas, the availability of which is beyond the op-
portunities of the average scientist working in mathematical ecology, epidemiology or other applied
research areas. Moreover, this elementary proof may lead to future work where proving similar results
for more complex networks can be attempted. According to our knowledge, the above theorem has not
been generalized to more complicated networks by using the two more sophisticated approaches.

Our elementary, ODE-based approach, presented in Ségtjoelds that [ ](t)/N tends uniformly
on bounded time intervals tgt). Moreover, we also give an upper estimate for the difference in terms of
network sizeN, and we prove thatf(t) is an upper approximation of J(t)/N. According to our knowl-
edge, this has not been previously verified and it does not follow from the previous two approaches.

3. First-order PDE approach

In this section, the first proof of Theorethl is given. The main idea of the proof is based on the
observation that for largl, the discrete distributiork (t) can be approximated by a continuous density
functionp(t, z). The rigorous version of TheoreBlin this context reads as follows.

THEOREM 3.1 Ifi(0) =[1](0)/N, then for anyt > 0, we have

R0
N'l“oo"m‘T‘ =0

Let us introduce a continuous time-dependent density fungtioye) instead of the discrete distri-
butionxy(t), with the following formal relationz = k/N. Following this, Xy, Xk (t), Xk—1(t) andxk+1(t)
in (2.1) can be formally change @p (t, 2), p(t, 2), p(t,z—1/N) andp(t, z+ 1/N), respectively. This
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leads to the following partial differential equation:

apt,2) = (Nz+ Dyp(t,z+ 1/N) + (Nz— 1)(N — Nz+ 1)p(t, z— 1/N)B/N —
(Nz(N = N2)B/N + Nzy)p(t, 2).

Now using the approximations

neglecting the AN and I/N? terms and writing instead ofp (t, z), after some algebra, the following
first-order PDE fomp is obtained

otp =2yozp+ (22— 1Dfp —2(1 —2)B0zp + yp-
Introducing the functiom(z) = y z— pz(1 — z), the equation fop becomes

op = 0z(p). (3.1)

This first-order PDE needs an initial condition of the following type

p(0,2) = po(2). (3.2)
Since the formal relation between the variables is k/N, the initial condition R.4) yields
ko ko+1

po(z) =1 for N <z< and po(z) =0 otherwise

Finally, the expected value of the infected nodes from the first-order PDE needs to be determined.
Thus, we have to find the function correspondingitg](t) = [1](t)/N in (2.5. Usingz = k/N and

changing the termxk(t) to p(t, z), we note that the sums i2.6) correspond to an integral. Namely,
[in](t) corresponds to

N
k k) 1
N Z ~ P (ta _) NE
= N N/ N
and this sum is an approximation of the integral
1
N / Zp(t, 2)dz.
0

Noting thatfo1 po(2)dz = 1/N, we can introducé*(t) as a function corresponding toy] (t) as
follows:

fol Zp(t, z)dz

i*(t) = . (3.3)
Jo po@)dz
The mean-field equatior2(7) can be solved explicitly and the solution is given by
B(t)i
i(t) = (io

p—y —Abio
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whereig = i (0) is the initial condition and

Alt) = —pexp(B—y)t), B(t) = (8 —y)expl(B—y)t).
The first-order PDEJ.1) can also be solved explicitly, and thehd) yields

L BO[ . NE-p) 2A®)
'(”‘Aa)[ a0 'OQ(HZNw—y—A(t)io)—A)]

Having these explicit formulas far(t) andi(t), it is easy to see that is not a solution of the
mean-field equatior2(7) but it can be proved that & — oo it tends to the solution ofX7). Namely,
we have the following Lemma.

LEMMA 3.1 Letp be the solution of the syster8.0)—(3.2). Leti*(t) be defined by3.3). Leti(t) be
the solution of the scaled mean-field equation giveny)(with initial conditioni (0) = ko/N. Then
for anyt > 0, we have

Jim i@ =il =0.

The Lemma can be proved by using the explicit formulasifdt) andi(t). Now the proof of
TheorenB3.1can be concluded as follows. We want to prove that the scaled expectediygitie fends
to the solution (t) of the scaled mean-field equationlds— oo. In order to prove this, we introduced
a first-order PDE that can be considered the limitdiasN — oo. Using this PDE, we defined the
functioni*(t) that corresponds tay](t). According to Lemma.1, i *(t) is close tai (t) for large N.
Hence, we only have to show finally thag[(t) is close ta *(t). Thus the proof of Theore®.1 will be
complete if the following Lemma is verified.

LEMMA 3.2 Letxk be the solution of4.1) satisfying the initial condition given by2(4), and letp be
the solution of 8.1) with initial condition given by 8.2). Let [iN](t) = [1](t)/N and let | ](t) andi *(t)
be defined byZ.5 and @.3). Then for anyt > 0, we have

Jim (lin]® =i ®1=0.

The proof of the Lemma is based on the fact that sys&#) ¢an be considered as the discretization
of the first-order PDEJ.1) in the variablez. It is known even for more general PDEs, see, e.g. Chapters
3 and 4 inHundsdorfer & Verwe(2003, that the solution of the discretized system tends to that of the
PDE as the step size of the discretization goes to zero, that is in ouNctEsels to infinity.

4. Stochastic proof of Theorem 2.1

Let us denote byl (t))t>0 the stochastic process that determines the number of infected nodesfat time
In this section, we will prove thdt(t)/N converges stochastically t@) asN — oo, this is formulated
in the following Theorem.

THEOREM4.1 Ifi(0) =[1](0)/N, then for anyT > 0, there exisK > 0, such that for any > 0, we
have

P (‘i(t) — % > 5) < % forallt € [0, T].
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Itis important to note that this theorem is stronger than The@drsince itimplies that the expected
value ofl (t) converges ta(t).

Before going into the details of the proof, we note that this approach can be generalized to so-called
density dependent Markov chains. In our case, this means that there exist two continuous functions
A, C: R — R, such that the transition coefficients in the Kolmogorov equatiof) can expressed as

follows:
ax k Ck k
N_A(ﬁ)’ N_C(N)'

From 2.3), these functions are
A(z)=pz1-2, C(@@=yz

Following Kurtz (1970, we introduceF (z) = A(z) — C(2). This is motivated by being relatively
easy to derive the following equation:

t
E(®) = E(l(O))-i-/0 E(F(1(s))ds,

where E stands for the expected value (herigél (t)) = [I](t)). Therefore, ifF and E commute
(i.,e. E(F (1)) = F(E(l))), the expected value of ] satisfies the following mean-field equation:

[i1=FID. (4.1)

At this stage, it is worth noting that for certain scenarios, simple arguments can be used to derive the
mean-field equations without further precise mathematical arguments. Namely, when the Kolmogorov
equations are numerically tractable, the precise evolution of the probability distribution over time can
be computed. If this distribution proves to be unimodal and highly picked, Ehand E commute at
least approximately and thea.() follows immediately.

The main step of this approach is to prove théf can be expressed as follows:

t t
1(t) =1(0)+ Y1 /ﬁl(s)@ds Y, /yl(s)ds , 4.2)
0

N
0

whereY; andY, are standard Poisson processes (Witk 1). The equation in this form can be found
in Kurtz (1980 and in Sectior? of Chapter 11 irEthier & Kurtz (2005. The derivation is based on
Martingale and Semigroup theory and it can be foundtihier & Kurtz (2005. The choice of this
equation as a starting point is also motivated by its ease of intuitive interpretation. The Poisson process
Y1 counts the number of infections in the time intervalt[&the intensity of which can be expressed by
the integral in the argument &f. Similarly, the Poisson proce¥s counts the number of recoveries in
the time interval [Qt], the intensity of which can be expressed by the integral in the argumeft of

We note that the earlier approachkafrtz (1970 1971) does not use Martingale theory. In these two
papers, a self-contained proof can be found and can be followed without understanding the notations
and most of the preliminary work presented in Chapters 3 and 4 of theHthadr & Kurtz (2009.

Let us introduce

I(t)

INM =~ (4.3)
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andY; (r) = Yi(z) — 7, which is a Poisson process centred at its expectation, ttiatYigz)) = 0 for
all 7.
Dividing (4.2) by N, after some simple calculations, we get

t
|N(t)—|N(O)+/ F(in(s))ds + Yl(/ ﬁl(s)&ds)—%\?z(/o yl(s)ds). (4.4)

If t € [0, T], then the value of the integral ¥, is bounded by 0 angN T, and the value of the
integral inY> is bounded by 0 angd N T. Hence, the following inequalities hold true:

Y1 (/ ﬁl(s)—ds) Vz(/otyl(s)ds)

The proof is now based on the following proposition, a law of large numbers type statement and can
be proved by using Chebyshev’s inequality like the law of large numbers.

< Yi(BNT),  sup
te[0,T]

sup <Y2(NT).  (4.5)

te[0,T]

PROPOSITION4.1 LetX(t) be a standard Poisson process (Wite 1). LetY(t) = X(t)—tandc > 0
be a positive number. Then for any>= 0 and for anyn € N, the following inequality holds:

C
ne2’

P (%|Y(cn)| > s) <

Proof. It follows easily thatE(Y(t)) = 0 and that the variancB?(Y (t)) = t for all t. Let us define
Z, = Y(cn)/n. Then,E(Z,) = 0 andD?(Z,) = ¢/n for all n. Now applying Chebyshev’s inequality
to Z,, we get the desired statement. O

Using this proposition, an upper estimate for

t
yn(t) = —Y1 (/ I (s)& ds) - %Yz (/0 yl (s)ds) (4.6)

can be derived as follows. From.p), we obtain
1. 1.
sup [yNM)] < S Y1(BNT) + =Ya(y NT). (4.7)
te[0,T] N N
Thus, if

sup [yn(t)| > e,
te[0,T]

then at least one of the inequalities
1. € 1. £
ﬁYl(ﬁN T) > E or NYZ()/ N T) > E

holds. HenceP (supcpo 71 IYn(D)] > €) can be estimated by the probability of the larger. Therefore, it
can be obviously estimated by the sum of the two probabilities

P( sup |yn(t)| > e) <P (1Y1(ﬁNT) > —) +P (%Vz(y NT) > g) (4.8)

te[0,T]
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Thus, using Propositiod.1, we obtain
48 + )T
P( sup Iy (®) > e) LA DT (4.9)
te[0,T] Ne

Now the difference ofn (t) andi (t) can be estimated (the latter is defined Byr)).

PROPOSITION4.2 Leti(t) be the solution of4.7) and letin (t) be given by 4.3). Let us denote by
M the Lipschitz constant of on [0, 1]. If iN(0) = i(0), then for allt > 0, the following inequality
holds:

lin(@) —i ()] < lyn()eMt.

Proof. The functions y andi satisfy

t
iN<t)=iN<0)+/O F(in(s)ds + yn (1)

and
t
it =i(0)+/0 F(i(s))ds.

Subtracting the two equations, using the initial conditions and the Lipschitz constdnt wé
obtain

t
lin® — i O] < [Ya)] +/0 Miin(s) — i (9)]ds.

Using Gronwall's lemma, the statement follows easily. O
Thus, if
sup fin(t) —i(®)] >4,
te[0,T]
then
sup |yn(t)| > oe™MT.
te[0,T]
Hence,
P( sup lin(t) —i)] > 5)< P( sup |yn(t)] > 5e—MT).
te[0,T] te[0,T]

Finally, we can use the estimate #h 9) to get

. . Ap +y)TePMT
P —it) > L5
(tes[(l){FT)]“N() 'O > ) N&2

and this proves Theoretl
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5. ODE-based proof of Theorem 2.1

In this section, the main result of the paper is formulated and proved. This is an ODE-based proof where
the evolution equations of the moments of the distribution form a countable system of ODEs. The proof
only uses ODE techniques and a perturbation theorem for the infinite system is presented.

THEOREMbS.1 Leti be the solution ofZ.7) with initial conditioni (0) = [1](0)/N, and let [ ] be given
by (2.5 through the master equatio®.{). Then for anyT > 0 there exisK > 0, such that
o] _ K

i(t) — N | SV forallt € [0, T].

In fact, we have 0< i(t) — ['—],\%2 < % fort e [0, T], that isi (t) is an upper approximation of
[11(®)/N.

The approximationd.7) of (2.6) is based on the moment closure technique. Thus, to keep an exact
system, all higher-order moments must be considered and this leads to a countable (infinite) system of
ODEs.

5.1 Moment equations and their approximations

Let us introduce thg¢th moment of the probability distributioxk(t) (i.e. the probability of finding states
with k infectious nodes, whetle= 0,1, ..., N)

N

K\
ity =3 (N) Xe(0) (5.1)

k=0
To derive differential equations for the moments, the following Proposition is given.

PrROPOSITIONS.1 Letrg (k =0,1,2,...) be a sequence and lett) = Zﬁ'zorkxk(t), wherex(t) is
given by @.1). Then

N
F() =D @k — M) + C(fk-1 — 1)) ).
k=0
Proof. From .1), we obtain
N N N N-1
) =D now® = D rkak-%-1(t) — D fkb(®) + D kX1 ()
k=0 k=1 k=0 k=0

N-1 N N
= D reraac(®) — D rbiow(®) + D re-aGo ().
k=0

k=0 k=1
Using thatay = 0, cg = 0 andby = ak + ¢, we get
N N

F(t) = D (Ney1dk — k(@K + G) + k=160 Xk(®) = D @kt = k) + Ck(fk-1 — )Xk ().
k=0 k=0
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Before applying Propositiof.1 with r, = (k/N)I, it is useful to define the following two new
expressions:

Kk+1) -kl —jki-t k=1l —kl 4 jki—1
Re,j = NT-T s Qj = NI-T -

Combining these with Propositidh1leads to

N . .
kit kit
yjt) = Z(%(J Ni—1 T Rk,j)+ %(—Jm + Qk,j))xk(t)~
k=0

From @.3), we get that

ax Gk k k2
W—Nz(ﬁ—y)ﬁ—ﬂm,
and therefore,
N ([ ki kitl N a Ck
Yi®) =2\ 108 =)y = gz )® + 2 (TR + 1 Qe ) (o).
k=0 k=0
Hence,
. . 1
Vi) = j(B=7)yj®) — jByj+1(t) + Ndj ), (5.2)
where
N
dj(t) = D (@Rk.j + kQi,j)Xk(1). (5.3)

k=0

Using the binomial theorerR j and Qk,j can be expressed in terms of the powerk,dienced;
can be expressed ag(t) = ZHZl dj v (t) with some coefficientslj;. Therefore, systemb(2) is an
infinite homogeneous linear system for the momemtsThis homogeneous linear system is not written
in the usual matrix form because it is useful to separate t(ﬁ)(]erms in order to handle the large
N limit. The d; terms contairN, hence to use the/N — 0 limit it has to be shown that; remains
bounded a$\ goes to infinity. This is proved in the next Proposition.

PrROPOSITIONS.2 For the functionslj, the following estimates hold.
i1
o<din<ii=Y

2_ (B+7y), forallt=o0.

Proof. Taylor's theorem, with second degree remainder in Lagrange form, states that

(X — X0)?

f(x) = f(xo0) + f'(x0) (X — X0) + f"(¢) 5
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where is betweerxp andx. This simple result can be used to find estimates for Bathand Q. j. In
particular, applying the above result whéfx) = x/, x = k + 1 andxg = k gives

g -pe
R =% Nt
with some¢ € [k, k + 1]. Similarly, whenx = k — 1 andxg = k, we obtain
i -1y gi?
Qi = "% NIt

with somey € [k, k 4+ 1]. Hence,R j and Qi j are non-negative yielding thd (t) > 0. On the other
hand, usingZ.3) and that’/N < 1 andy/N < 1 leads to the inequality given below

JG-1) rac | o iG-9
i i < —+ =)< .
akRk,j +ckQx,j < 5 (N+N)\ 5 B+7)
Hence, the statement follows immediately frofndj and using thad |’<\|:0 Xk(t) = 1. O

The exact equations for the momenis2j are now setup such that the limit &f — oo can be
considered. This leads to the following system:

i) = j(B—y)z;(t) — [Bzj4a (D), (5.4)

with the same initial condition as foyj, that isz; (0) = k(j)/NJ'. It is worth noting that a solution of

system §.4) can be obtained in the form) = z!. Substituting this expression fay in (5.4), we get the
following equation forz:

2= (f—y)z- B2,
with initial condition z(0) = ko/N. This differential equation is the same &7 for i. Hence, the
approximating equations for the momenis4j are not only more tractable but they allow to recover
the mean-field equations. Howevgi(t) = [1](t)/N andz are not identical. The former comes from
the exact system, whileis based on the approximating equations obtained from the exact system in the
limitof N — oo. Therefore, the relation between the two needs to be formally established, see Theorem
5.2 The following two statements prove that indeed—= z =i is the only uniformly bounded solution
of equation 5.4) and thatz; is a good approximation tg; fort € [0, T] and for N large. The lemma
and theorem given below play a crucial role in completing the proof of The&:@nTo increase the

clarity and transparency of the proof a diagram linking all propositions, lemmas and theorems is given
in Fig. 1.

LEMMA 5.1 System §.4) subject to the initial conditiorz;(0) = kcj)/Nj has a unique uniformly
bounded solution, where uniform boundedness means that there kxistsh that|zj (t)| < M for

all j. This solution can be given as = zi andzy (t) =i(t).

THEOREMb5.2 Let us assume that the solutions of systend @nd ©.4) satisfy the same initial con-
dition y;j (0) = kj /NI = z;(0). Then for anyT > 0, there exisK > 0, such that

K
0<z1(t) — y1(H) < N fort € [0, T].

The rather technical proof of the lemma is postponed to the Appendix.



FROM EXACT STOCHASTIC TO MEAN-FIELD ODE MODELS 13 0of 20

Theorem 5.2
establishes
the link between

Theorem 5.1 LF

z,and y,
Lemma 5.1
proves the
uniqueness of
a uniformly

Proposition 5.3 Lemma 5.4

verifies the left gives a

inequality in the bound on y;-z;
bounded statement of

solution for z Theorem 5.2

=
/ \ Lemmas 5.2 and 5.3
prove that z, <y, for j large
Proposition 5.2

Proposition 5.1
provides estimates / \

shows the derivation
of the moments’ for d, needed to

equations derive the Proposition 5.4 Propositions A.1 and A.2
equations for z proves the prove two inequalities

positivity of x,(2)

FiG. 1. The flow of the proof of Theorem 5.1

5.2 Proof of Theorenb.2

In this subsection, we prove Theorén® This together with with Lemma.1 yields our main result
formulated in Theorerd.1 Throughout this section, letj be given by §.1), and letz; be the unique

solution of §.4) subject to the initial conditioa; (0) = k(J)/N I. Then the following proposition verifies
the left inequality in the statement of Theor&mg.

ProPOSITION5S.3 Under the above conditions, we have thdt) < z;(t) forallt > 0.
Proof. Since the varianceyf — yf) is non-negative, it follows thayf(t) < yo2(t) for all t. Sinced; = 0,
the first equation of systens2) now reads as

yi= (B —7y)yr— By

Hence,y1 < (B —y)y1 — ﬂyf. If there existd2 > 0 such thaty;(t2) > z1(t2), then there exists
t1 < tp for which y1(t1) = z1(t1) andyy(t) > z1(t) forall t e (11, to]. Leto(t) = y1(t) — z1(t) for
t € [ty, to]. Then using the functioff (x) = (8 — y)x — X2 gives

b=y1—21 < f(y1) = f(z1) < M(y1—z1) = Mo,

whereM is the Lipschitz constant df on the interval [01]. Applying Gronwall’'s lemma t@, we get
v(t) < Oforallt € [tg, t2], which is a contradiction. O

In the next two Lemmas, it will be proved thatjifis large enough, thery < y;. This result will be
heavily used in the proof of Lemna4.

LEMMA 5.2 There exisfjpo € N ando > 0, such that

zj(t) <yjt), forallj> jo, te]0,d].
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Proof. In order to derive an upper estimate g we exploit the fact that using = zi the functionzy
can be explicitly determined from the first equation of system)(z; = (f — y)z1 — ﬂzf. Introducing
g = ko/N = z1(0) anda = f — y gives

aq
(a — pa)exp(—at) + fq’

To estimate this expression, two different cases need to be considered.

z1(t) =

Case 1If a — fq < 0, thenz; is decreasing.
In this case, let us choose a numbes 0 anda’ < a such that

exp(—at) <1—a't, forallte]0,t].

Then for allt € [0, t']

aq . q
(@ —p(L—a'ty+pq 1+ct’

wherec = —a/(a — fq)/a > 0. Hence,

z1(t) <

<———, forallte[o0,t]. 5.5
Atopl ora €[0,t] (5.5)

A trivial lower estimate fotyj is yj (t) > (ko/N)! Xk, (t). In order to get a lower estimate fig, (t),
let us multiply @.1) by €t and integrate from 0 to. This gives

t t
XD = %4(0) + a1 / Xi_1(S)EPSs + Gy 1 / Xir1(S)EPds, (5.6)
0 0

In the case whek = kg and upon using the initial conditiomx, (0) = 1), it follows thatx, (t) >
e Dol forallt > 0. From €% > 1 — byt, it follows that

yj(t) > q'(1—bgt) forallt > 0. (5.7)
PropositionA.1, stated and proved in the Appendix, can now be applied vehea by,. For an

arbitraryty < 1/by,, the indexjo is chosen according to the proposition. et min{t’, to}. Then for
all j > joandt € [0, d], from (5.5) and 6.7), it follows that

- < gl (1-bh) <yj(0).

Case 2If a — pq > 0, thenz; is non-decreasing.
The proof is similar hence it is presented only briefly.
The upper estimate far (t) in the interval [Q1/a] is

(5.8)

wherec = a — fq.
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The lower estimate fory; is based on the observation thgi(t) > (ko/N)jxkO(t) +
((ko + 1)/N)! xy+1(t). Deriving lower estimates foxy, (t) and forxy,+1(t), it follows that there exists
j1 € Nandt’ > 0, such that

yi) > gl (1+dlt), forallte[0,t], | > j. (5.9)

whered € (1,14 1/Nq).
Then applying PropositioA.2, which is stated and proved in the Appendix, we get the desired
Statement. 0

The next proposition is needed in the proof of Lembna
ProPOSITIONS.4 Forallk € {0, 1, ..., N} and for allt > 0, we havexk(t) > O.

Proof. In the casé = ko and upon using the initial conditiomx, (0) = 1), from (5.6), it follows that
Xigg (1) = e ™' > 0forallt > 0. The statement fdt > ko can be proved by induction. Assuming that
Xk—1(t) > 0, (5.6) gives

t
Xi(t) > a_1 et / Xk—1(5)e*Sds > 0.
0

Using a similar argument, the statementkot kg follows easily. d

LEMMA 5.3 For anyT > 0, there existg; € N, such that

zj(t) <yjt), forallj > ji, te[0,T].

Proof. Using thatz; = i1, an upper bound for; can be derived. It follows easily fron2(7) that if
i(0) > 1—y/pB, theni is a decreasing function. If the opposite inequality holds, thisran increasing
function. Henceg = maxko/N, 1 — y /£} is an upper bound for, that isi(t) < g forallt > 0.
Therefore,

zj(t)<q', forallt>0. (5.10)

A lower bound ony; can now be derived. Let us start by chooskig {0, 1, ..., N} such that
k/N > g holds and introducgg andé according to Lemm&.2 Letr be given by

r = min{xx(t):t e[o, T]} > O.

The positivity ofr is guaranteed by Propositidn4. Finally, let us choosg; > jo in such a way
thatr (k/N)) > g forall j > j1. Then for allt € [d, T] the following inequality holds:

Kk i Kk j )
o> (y) o= (g) r-dzz0.

On the other hand, from Lemm&.2 it follows that zj(t) < yj() fort e [0,d] since
j=j1> o O

To formulate our final Lemma, a new variable is introduced together with its corresponding evolution
equation. Foraljf e Nandj > 1,uj is defined by

Uj :yj —Zj.
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Subtracting $.2) and 6.4) gives

i . . 1
ujt) =jB -y - Jﬁuj+1(t)+ﬁdj(t), (5.11)
where the initial condition isij (0) = 0.
Our next and final Lemma gives boundsug(t) and yields the basis of the proof of Theorérd.

LEMMA 5.4 For anyT > 0, there exism € N andK, > 0, such that

Km

[un®)] < N forallt € [0, T].

Proof. According to Lemméb.3, we can findm € N, such thatuyn(t) > 0 andum1(t) > O for all
t € [0, T]. Now let us considerg.11) with j = m. Multiplying this equation by exg-m(s — y)t) and
integrating from O td gives

t 1 t
Umn(t)e~ M=t — —ﬁm/ Um41(s)eMP=7)8ds + N/ dm(s)e™MB=7)8(s,
0 0

Combining thatun1(t) > 0 with the upper bound fod,, given in Propositiorb.2 results in the
following inequality,

iwdm(ﬂ—wt
N 208=7) '

Thus, the statement holds wikky, = %em(ﬂ—yﬁ_ 0

0<um(®) <

Now we are in the position to complete the proof of Theofef

Proof of Theorenb.2. Let us choosen and K, according to Lemm&.4. We prove by induction that
foranyj =1,2,...,m— 1, there existK; for which
K;j
[uj ()] < N’ forallt € [0, T].

For j = 1, this together with Propositios3is exactly the statement of Theorén®.
Let us assume that the statement is true dpr; and prove it foruj. Multiplying (5.11) by
exp(—j (# — y)t) and integrating from O tb gives

i t : 1 t :
u,—(t)e"(/”‘”tz—ﬂj/O uj+1(s)e‘1(ﬂ_”)sds+ﬁ/o dj(s)e™1F=7)sds,

Combining thafuj;1(t)| < Kj11/N with the upper bound fod; given in Propositiord.2 results
in the following inequality:
2BKjr1+ (j - DB+ Y)ej(ﬁ_y)-r.
28-7)

luj®] < Kj/N  with K} =
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6. Discussion

Understanding the link between exact stochastic and mean-field approximation models is a challenging
problem that arise often in applied research and when formulated rigorously can lead to difficult theoreti-
cal questions. Identifying the theoretical link between different modelling paradigms, such as stochastic
versus ODE- or PDE-based models, requires the concurrent use of a number of different mathemati-
cal techniques. For example, Theor8rit combines PDE elements with the discretization theorem for
PDEs which is mainly used in Numerical Analysis. At the same time, Thedrémses Martingale

(see 4.2)) and/or semigroup theory. The concurrent use of different mathematical tools may limit the
applicability of these results or can make it non-trivial to check if the assumptions of the theoretical
results hold.

This paper makes two main contributions. First, it provides a unifying framework for the existing
proofs and discusses the exact way in which convergence of the exact to the mean-field model holds.
On the the other hand, we propose a novel proof that only relies on ODE-techniques and thus increase
the transparency of our results and makes it more accessible to applied researchers. The main idea of
our proof is the use of all moments of the distribution. This enabled us to keep the system exact and
formulate convergence results to an approximation model based on the simplest form of moment clo-
sures. Our results rely on perturbation methods for infinite ODE systems and allowed us to theoretically
identify the link between the exact model and moment closure models often derived based on heuristic
arguments.

It is worth noting that the simplest method, the PDE-based approach, leads to the point-wise conver-
gence of the expected value, while the stochastic method yields the stronger convergence in the sense
that convergence also holds for the distribution. Our main result proves the uniform convergence of the
expected value that in some sense lies between the two existing approaches. The technique presented in
this paper could lead to further developments on several different fronts. For example, the most natural
extension could be to generalize the link between exact stochastic and approximation models for net-
works other than fully connected or to check the validity of existing moment closure techniques that so
far have only been tested via numerical simulations. At the same time, the results presented in the paper
could also be extended for general dynamics and in the context of applied areas other than ecology and
epidemiology.

Funding

P.L.S. acknowledges support from OTKA (81403). Funding from the European Union and the European
Social Fund is also acknowledged (financial support to the project unsldiOP-4.2.1/B-09/1/KMR).
I.Z.K. acknowledges support from EPSRC (EP/H001085/1).

REFERENCES

BALL, F. & NEAL, P. (2008) Network epidemic models with two levels of mixiMath. Biosci, 212, 69-87.

BANSAL, S., GRENFELL, B. T. & MEYERS, L. A. (2007) When individual behaviour matters: homogeneous and
network models in epidemiology. R. Soc. Interfaget, 879-891.

DIEKMANN, O. & HEESTERBEEK J. A. P. (2000)Mathematical Epidemiology of Infectious Diseases: Model
Building, Analysis and InterpretatioiChichester, UK: John Wiley.

ETHIER, S. N. & KuRTZz, T. G. (2005)Markov Processes: Characterization and Convergedoén Wiley.

HousE, T. & KEELING, M. J. (2011) Insights from unifying modern approximations to infections on networks.
J. R. Soc. Interface8, 67-73.



18 of 20 P.L. SIMON AND I. Z. KISS

HUNDSDORFER W. & VERWER, J. G. (2003)Numerical Solution of Time-Dependent Advection-Diffusion-
Reactions Equation8erlin: Springer.

KEELING, M. J. (1999) The effects of local spatial structure on epidemiological invadtros. R. Soc. Lond. B
266, 859-867.

KEELING, M. J. & EAMES, K. T. D. (2005) Networks and epidemic modelsR. Soc. Interface?, 295-307.

Kiss, I. Z., GREEN, D. M. & KAo, R. R. (2006) The effect of network heterogeneity and multiple routes of
transmission on final epidemic siadath. Biosci, 203 124-136.

KurTz, T. G. (1970) Solutions of ordinary differential equations as limits of pure jump Markov procdsseml.
Probabl, 7, 49-58.

KURTz, T. G. (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential
processesl. Appl. Probabl, 8, 344—-356.

KURTZ, T. G. (1980)Biological Growth and Spread.ecture Notes on Biomathematics, vol. 38. Berlin: Springer,
pp. 449-467.

LINDQUIST, J., MA, J., VAN DEN DRIESSCHE P. & WILLEBOORDSE, F. H. (2010) Effective degree network
disease models. Math. Biol, 62, 143-164.

MORENO, Y., PASTOR-SATORRAS, R. & VESPIGNANI, A. (2002) Epidemic outbreaks in complex heterogeneous
networks.Eur. Phys. J. B26, 521-529.

RAND, D. A. (1999) Correlation equations for spatial ecologikdvanced Ecological Theoryy. McGlade ed.).
Oxford: Blackwell, pp. 100-142.

SATO, K., MATSUDA, H. & SASAKI, A. (1994) Pathogen invasion and host extinction in lattice structured popu-
lations.J. Math. Biol, 32, 251-268.

SIMON, P. L., TAYLOR, M. & Kiss, I. Z. (2011) Exact epidemic models on graphs using graph automorphism
driven lumping.J. Math. Biol, 62, 479-508.

SPORNS O. & KOTTER, R. (2004) Motifs in brain network$los Biol, 2, €369, 1910-1918.

TRAPMAN, P. (2007) Reproduction numbers for epidemics on networks using pair approxinid#tn. Biosci,

210 464-489.

VAN BAALEN, M. (2000) Pair approximations for different spatial geometrig®e Geometry of Ecological In-
teractions: Simplifying Complexif). Dieckmann, R. Law, J. A. J. Metz eds). Cambridge, UK: Cambridge
University Press, pp. 359-387.

VoLz, E. & MEYERS, L. A. (2007) Susceptible-infected-recovered epidemics in dynamic contact netiRooks.

R. Soc. B274, 2925-2933.

VoLz, E. & MEYERS, L. A. (2009) Epidemic threshold in dynamic contact networksRoy. Soc. Interface

6, 233-241.

Appendix A
First, we prove Lemma.L This together with Theore®.2yields the proof of Theorer.1

Proof of Lemm&.1 Since system.4) is linear and homogeneous, it is enough to prove that the only
solution with zero initial condition is the constant zero function.

The system is autonomous hence it is enough to prove that the statement is true on a time interval of
lengthT, that isz; (tg) = O for all j impliesz; is constant zero ortd, to + T]. This result can then be
extended using induction to show timtis constant zero on the intervalsT, (k + 1)T] for all k € N.

Thus, it is sufficient to prove that there exidts> 0, such thatzj (0) = 0 for all j implies thatz; is
constant zero on [OT].

Multiplying (5.4) by exp(—j (8 — y)t), introducingoj (t) = z;j(t) exp(—j (8 — y)t) and denoting
B — v by a leads to the following differential equation foy:

b (1) = —jpvja(t)e™. (A1)
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It is useful to show now that conditions (0) = 0 andoj(t) < M for all j imply that there exists
T > 0, suchthabj(t) = 0 on the time interval [OT].
Integrating A.1) and using the initial condition; (0) = 0 gives

t
vj(t) = —jﬂ/o vj+1(s)€*°ds. (A.2)
This equation can be used iteratively anccan be expressed in termswgf 1 as
) /,>J' t )
v1(t) = (—1)J j ﬁ/ l)j+1(5)eas(eat — e“S)J_l ds. (A3)
a 0

This statement can be proved by induction usiAd). Let us now choose a humbg&rsuch that
pexplaT) — 1)/a < 1. Then, for allt < T and for alls € [0, t], the following inequality holds,
Bexplat) —exp(as))/a < 1. Therefore, the right-hand side &.8) can be estimated bjg’- constant,
whereq = f(explaT) — 1)/a < 1 sincevj is uniformly bounded. Thus, the right-hand side tends to
zero when taking the limif — oo. Hencepi(t) = O for allt € [0, T].

Using (A.1) with j = 1 gives thab,(t) = 0 also holds for alt € [0, T]. Similarly, by induction, it
follows thatv(t) = Oforallt € [0, T] and for allj € N. This completes the proof. O

Now we prove two Propositions that were used in the proof of Lerdraa

PROPOSITIONA.1 For any positive numbeisandd and for allty € (0, 1/d), there existgo € N such
that for allj > jo andt € [0, tg], the inequality(1 + ct)~! < 1 — dt holds.

Proof. Let f(t) = 1/(1 — dt) andg(t) = (1 + ct)}. We will prove that there existp € N such that
forall j > joandt € [0, to], the inequalityf (t) < g(t) holds. Sincef (0) = 1 = g(0), it is enough to
prove thatf’(t) < ¢/(t) for all t € [0, tp]. We have that

d __ d
(1-dt)2 =~ (1-di)?

f'(t) =

and
g =jed+ct > je.
Hence, choosing a numbgy to satisfy

d
(1 - dtp)?

it follows that for all j > jo andt € [0, to]

< oG,

d

f(t)<m§

joc < je < g).

O

PROPOSITIONA.2 Letc > 0 andd > 1. Then for allty € (0, (d — 1)/dc), there existgo € N such
that for allj > jo andt € [0, tg], the inequality(1 — ct)~) < 1+ d!t holds.
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Proof. Let f(t) = (1 —ct)~1 andg(t) = 1 + d/t. We will prove that there existg € N such that for
all j > joandt e [0, tg], the inequality f (t) < g(t) holds. Sincef (0) = 1 = g(0), it is enough to
prove thatf’(t) < ¢'(t) for all t € [0, tg]. We have that

/() = je@—cy 17t < je@ —ctg) 7172
and
gt)=d.

The assumptioty € (0, (d — 1)/dc) impliesd(1 — ctg) > 1, hence there exists a numbgrfor
which
c

1-ctp

j <dll-ctp)!, forall j > jo.

Thus, we get that for al] > jo andt € [0, tg]

jc

I di—g
(1—ct0)i+l<d =g

f(t) <

holds. O
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