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Abstract

We consider previously proposed procedures for generating clustered networks and

investigate how these procedures lead to differences in network properties other than

clustering. We interpret our findings in terms of the effect of the network structure on

disease outbreak threshold and disease dynamics. To generate null-model networks for

comparison, we implement an assortativity-conserving rewiring algorithm that alters the

level of clustering while causing minimal impact on other properties. We show that

many theoretical network models used to generate networks with a particular property

often lead to significant changes in network properties other than that of interest. For

high levels of clustering, different procedures lead to networks that differ in degree

heterogeneity and assortativity, and in broader-scale measures such as R0 and the

distribution of shortest path lengths. Hence, care must be taken when investigating the

implications of network properties for disease transmission or other dynamic process

that the network supports.

Keywords: Networks, Clustering, Epidemic Dynamics, Percolation
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1 Introduction

Contact networks are a frequently used tool in epidemiological modelling: Each

epidemiological unit (be it a person, animal, self-contained sub-population) is considered as

a network node, with potentially infectious contact between nodes represented by

directionless edges or directed arcs. The power of the approach is that by explicitly

considering the pairwise interactions between units, one can extend the results obtained

from compartmental, mean-field, spatial, and metapopulation or household-based models.

Direction, strength, and (potentially) timing of contact can all be accounted for. In STI

models (Anderson & Garnett, 2000), contact heterogeneity and patterns of connectivity can

be accommodated in a straightforward way. They also have the benefit of being able to use

epidemiological data directly, as opposed to modelling using summary parameters (e.g.

variance in sexual partner count) abstracted from the data.

The principal parameter estimated in epidemiological modelling is that of the basic

reproduction number R0. This may be defined as

the average number of secondary infections produced when one infected

individual is introduced into a [homogeneously mixed,] wholly susceptible host

population at equilibrium (Anderson & May, 1991).

However, though for simple models such as the mean field, R0 is well defined, in general no

analytic formula is available for R0 . Moreover, one must consider whether the concept of a

single R0 value is even appropriate in a complex population (Green et al., 2009).

Nevertheless, models of R0 and final epidemic size are of utility in considering the

risk of infectious disease between populations with different structure . Various authors

have found that epidemic spread is encouraged or hindered by different network properties.

(For an overview, see Shirley & Rushton, 2005.) A node’s degree – its number of contacts k –

is of key importance, as is the distribution of contacts: networks with a higher variance of

degree enjoy a higher R0 for the same between-node disease transmission rate τ (Anderson

& May, 1991). Mixing patterns of contact between nodes are also important. Under

proportionate mixing, nodes with contact rates u and v account for a fraction uv of contacts.

Deviations from this occur where mixing is preferential, for example assortative mixing in

homosexual and disassortative in heterosexual contact networks. Assortativity increases R0
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but decreases final epidemic size (Ghani et al. 1997; Gupta et al. 1989; Anderson et al.

1990; Newman, 2003a).

In this paper, the network property of most concern is that of clustering. Clustering

measures the degree to which ‘any friend of yours is a friend of mine’. In clustered

networks, if edges (a, b) and (a, c) exist, then connections (b, c) are more likely to exist than

would be expected by chance alone in random networks. This is a form of non-random

mixing associated with both assortativity and spatial structure. Clustered networks have a

lower density of nodes within two steps of a focal node compared with random networks,

limiting the spread of disease and reducing R0 (Keeling, 1999), since nodes infected by the

focal node are competing for further neighbouring nodes to infect.

Ideally when comparing networks, one would like to be able to vary one parameter

of interest, while keeping all other parameters constant. In this case, we are sure that any

differences in network properties are due to that parameter. In practice, this proves difficult.

To explore the dependency of epidemic dynamics upon network structure imposed by

clustering, various authors have designed different algorithms to generate clustered

networks (e.g. Watts & Strogatz, 1998; Newman, 2003b; Read & Keeling, 2003; Eames,

2007; Kiss & Green, 2008). However, these algorithms come from quite different start

points, and occasionally there are notable side-effects of clustering upon other network

properties (Kiss & Green, 2008).

In this paper, we consider a set of previously used algorithms for generating clustered

networks (Newman, 2003b; Read & Keeling, 2003; Eames, 2007) and investigate in what

ways these networks differ with otherwise similar degree and clustering coefficients. Here,

we are primarily interested in parameters of epidemiological interest, in terms of

transmission threshold for epidemic spread, potential epidemic size, and the time-course of

disease; though one must also consider the effect of network structure on the effectiveness

of control strategies (Kiss et al. 2005; Kiss et al. 2008). Some of these properties will be

disease or disease model dependent, however properties such as the distribution of shortest

path lengths or departures from proportionate mixing are related. We employ rewiring

algorithms to change the clustering coefficients of networks while maintaining other

selected network properties constant (Kiss & Green, 2008). Particularly, we wish to preserve
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the mean degree, degree distribution, and levels of assortative or disassortative mixing.

2 Method

2.1 Network construction

A network is described in terms of its number of nodes N and an adjacency matrix Aij,

elements of which are 1 where an edge (i, j) exists, and zero otherwise. The number of

edges from a single node i is given by ki =
∑

j Aij. All networks were undirected, generated

with N = 10 000 nodes, with mean node degree of either 〈k〉 = 5 or 〈k〉 = 10 and clustering

coefficients chosen from C = 0.2, 0.4, 0.6 or no clustering 0.0. A set of 100 networks were

generated for each parameter set. The clustering coefficient used is the ratio of triangles to

triples, where triples are permutations of three nodes u, v, w with edges (u, v) and (u,w) and

triangles are those where an additional edge (v, w) exists. Other definitions of clustering

exist (Watts & Strogatz, 1998), but this measure is easy to calculate and epidemiologically

useful. A selection of different network types were then generated, either using algorithms

reported in the literature, or by rewiring of other networks. These algorithms are described

below.

Fixed degree Each node has the same number of edges k, distributed at random by

applying 50×N rewiring operations to a lattice network, where in each rewiring

operation four unique nodes with edges (a, b) and (c, d) are rewired to give edges (a, d)

and (b, c).

Poisson Random Poisson networks were generated by assigning edges (a, b) for each pair of

nodes a < b with a single constant probability.

Iterative An iterative algorithm suggested by Eames (2007) was implemented. This

algorithm procedes by repeating two steps. In the first step, n1 triples are generated by

connecting unique nodes a, b, c with edges (a, b) and (a, c). In the second step, n2

triangles are generated by selecting a node u with at least two neighbours at random,

choosing two random neighbours v, w, and forming a link (v, w). Both steps are

subject to the constraint that no node may have more than k connections, and
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duplicate edges are not allowed. The network clustering coefficient is varied by

changing n1 and n2. Since there is potential for this algorithm to ‘stall’, it is considered

finished if kN
2
× 0.9975 edges are successfully assigned.

Spatial This algorithm (Read & Keeling 2003) begins by assigning each node i coordinates

xi and yi uniformly distributed across a square world of side-length
√

N with toroidal

boundary conditions (the top and bottom, and left and right edges are adjacent). The

probability of connection pij between two nodes i and j is determined by the distance

dij between them, according to pij = p0 exp(−d2/2D2) where p0 and D are parameters

to be adjusted to obtain the required 〈k〉 and C.

Group-based The clustering algorithm of Newman (2003b) has been discussed by the

current authors elsewhere (Kiss & Green, 2008). The N nodes are assigned to ‘groups’

with connections within groups as described below. Multiple group membership by

nodes leads to between-group linkages. For each of g groups, ν nodes are chosen at

random (without replacement), with nodes thus enjoying a mean of µ = gN/ν groups,

binomially distributed. For every pair of nodes that are members of the same group, an

edge is added with probability p = k
µ(ν−1)

(with higher probability where multiple

groups are shared). The resulting networks have clustering coefficient

C = p
1+µ(ν−1)/(ν−2)

, adjusted by altering the number of groups per node, µ, subject to

the constraint that p ≤ 1.

Unclustered Clustered networks generated by the iterative algorithm had clustering

removed using rewiring as for the fixed degree networks.

Unclustered preserving mixing Alternatively, rewiring to uncluster networks was carried

out by preserving assortativity. In this case edges (u, v) and (w, x) were rewired to

(u, x) and (w, v) only where edges were similar in terms of their node degrees: ku = kw

and kv = kx. This was carried out for the spatial algorithm.

Rewire to cluster Networks created using fixed degree or Poisson methods were clustered

using an iterative rewiring algorithm. At each iteration, a chain of five random nodes

u, v, w, x, y with edges (u, v), (v, w), (w, x), and (x, y) was identified without edges

(u, y) or (v, x). The effect of rewiring to remove (u, v) and (x, y) and insert (u, y) and
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(v, x) edges on a ‘local’ clustering coefficient is identified (Fig. 1). Where this is

increased, the rewiring is accepted. The ‘local’ clustering coefficient is defined as the

ratio of triangles to triples amongst triples a, b, c where node a is one of u, . . . , y. This

avoids calculating clustering repeatedly for the whole network.

Reclustered The group-based and spatial networks were reclustered to preserve clustering

coefficients and node degree but remove other forms of structure. This was performed

by first unclustering, and then using the rewire to cluster algorithm to return the

network to its former clustering coefficient.

Small sample networks generated by some of the above procedures are shown in Fig.

2. To compare the properties of networks with the same level of clustering, generated

according to different algorithms, we use a series of measures that capture the large scale

properties of the network.

2.2 Network measures

Simpler network characteristics such as the distribution and average number of contacts

and, for some cases, degree correlations were kept fixed to focus on the differences in

large-scale network features. In particular we focus on the measures detailed below:–

Path length In addition to the adjacency matrix Aij, we can calculate a matrix of shortest

path lengths Lij, denoting the number of edges required to be followed to travel

through the network from node i to j. By definition Lii = 0 and where no connecting

path exists, Lij = ∞. Path lengths were sampled for 10 nodes of each of the 100

networks in each set.

Correlation dimension Borrowing a term from chaos theory, we can use the correlation

sum to describe the large-scale structure of a network (Grassberger & Procaccia,

1983). We can calculate this in terms of L as follows:

χ(ε) =
1

N2

N∑
i,j=1

H1(ε− Lij)

where H1(x) = 1 for x ≥ 0 and zero for x < 0 (Heaviside step function). Therefore χ
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represents the proportion of nodes reached within ε steps through the network, with

χ(0) = 1
N

, χ(1) = 〈k〉+1
N

and χ(ε) increasing for higher ε in a manner dependent on

network structure. If χ(ε) ∝ εν (i.e. a straight line plot of χ v. ε on a log-log plot) then

we consider the network to have dimension ν. The shape of χ determines the potential

trajectory of an epidemic on the network.

Mixing measures We measure the degree to which networks depart from proportionate

mixing: in assortative networks, there is preferential connection between nodes with

similar degree. In contrast, in a disassortative network, edges are more likely to

connect nodes of dissimilar degree than expected with random mixing. Where we

write
∑

(i,j) x in place of
∑N

i,j=1 Aijx, iterating over all edges (i, j) ∈ E, then a measure

of mixing is given by the following correlation coefficient:

r =
M

∑
(i,j) kikj −

(∑
(i,j) ki

)(∑
(i,j) kj

)

M
∑

(i,j)(ki)2 −
(∑

(i,j) ki

)2

where M =
∑N

i,j=1 Aij, twice the total number of edges. The correlation r is positive

for assortative networks, negative for disassortative, and zero for proportionate

mixing.

Eigenvalue analysis The lead eigenvalue λ of the network adjacency matrix can be

obtained through simple iteration of the following expression:

V s+1 =
AV s

||AV s||1 ,

iterating until convergence, starting with V 0
i = 1/n (i = 1 . . . N). The notation || · ||1

indicates that for computational convenience, V is divided by its total at each step. The

lead eigenvalue λ is given simply by the solution of λV s = AV s where s is large. The

lead eigenvalue is related to R0 as discussed below (Diekmann & Heesterbeek, 2000).

Giant connected component (GCC) A network component is a set of nodes such that a

path can be found between any pair of nodes within the group. The largest such

component is the giant connected component (GCC). The potential resilience of a
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network to epidemic spread can be obtained by examining the size of the GCC when a

proportion of edges are removed at random. Typically, a sharp percolation threshold is

found, analogous to the epidemic threshold found with increasing transmission rate in

compartmental models (Newman et al. 2001).

2.3 Simulation model

Epidemic simulation allows numerical determination of the effect of network structure on

the threshold value of the transmission rate for epidemic outbreak, i.e. the point at which

R0 = 1, as well as final epidemic size. The time-course of the spread of disease is also

obtained.

Epidemic dynamics were simulated using an SIR model. At time t, nodes may be

susceptible S, infectious I or removed R. Infection is transmitted at rate τ across every

(S, I) edge. The epidemic is seeded with one or more infected nodes. Thereafter, the

probability of a node becoming infected depends on the state of its neighbouring nodes. In a

small time interval δt, a node with kI infected neighbours becomes infected with probability

1− exp(−kIτδt). Similarly, recovery/removal is modelled as a Poisson process with the

recovery probability given by 1− exp(−γδt), independent of neighbouring nodes. We use

synchronous updating with γ = 1 throughout and a timestep of δt < 0.01, with ten randomly

selected initial seeding nodes.

2.4 Estimates for R0

Scope of the problem Though R0 has a simple definition, this simple definition belies a

range of problems for its calculation and applicability. In addition, for structured

populations, a distinction can be made between the basic reproduction number of the

simulated disease R0, and the transmission potential ρ0 (May & Lloyd, 2001). The latter can

be defined as the average number of secondary cases derived from an index case chosen at

random from the population. Unlike R0, it is a function only of the properties of individual

nodes (see caveat later), and independent of network mixing properties. It is therefore a

useful baseline for comparison between epidemics with different transmission rates.

No general expression for the basic reproductive number R0 exists that can be
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directly calculated from basic network properties. Nevertheless, various estimates for R0

have been proposed which encapsulate network structure to a greater or lesser extent.

Frequently, these are expressed in terms of edge transmissibility T = τ
τ+γ

: the probability of

transmission between an isolated (S, I) pair during the whole infectious period of the I node

(Newman, 2002; Green et al. 2006). The estimates described below capture different

subsets of the network properties listed in the previous sections.

Generation-based approach In this approach, an estimate of R0 is made using the

distribution of node degrees and correlation between node degrees of adjacent nodes. Thus,

data concerning the spatial or large-scale network structure and clustering are discarded.

We consider the generation of an infected node to be the number of steps along the infection

chain it lies from the index case. We let Ii,g denote the number of nodes of degree i in

generation g and Ig =
∑∞

i=0 Ii,g is the total number of infected nodes in generation g. The

next generation, Ii,g+1 is given by

Ii,g+1 =
∞∑

j=0

Tjp(i|j)Ij,g,

where p(i|j) is the probability that a node with with j contacts is connected to a node with i

contacts, and T is the generation-wide probability of transmission across a link (Kao, 2006).

Iterating this calculation allows us to determine the number of infected nodes in consecutive

generations, and based on this, calculate R0 (see Appendix 1). Diekmann & Heesterbeek

(2000) have shown that under appropriate conditions, R0 is given by

R0 = lim
N,n→∞

(
n∏

g=1

Ig+1/Ig

)1/n

.

In this general case, a closed expression for R0 is difficult to obtain, however for specific

networks p(i|j) can be estimated from the network adjacency matrix as follows:

p(i|j) =

∑
uv Auv [ku = i] [kv = j]∑

uv Auv [ku = i]
,

– 10 –



Large-scale properties of clustered networks

where [x = y] gives unity where x = y, and zero otherwise. The number of infected nodes in

consecutive generations can then be computed under the assumption of networks of infinite

size with vanishing number of loops.

Summary statistics We now briefly report on various R0-like measures, and how they

relate to the above analytical approach. Assuming random seeding and I0 = 1, from the

equations above we obtain a value of I1 = 〈k〉T (where 〈k〉 is the mean number of edges per

node), which corresponds to the transmission potential, written fully as ρ0 = 〈k〉 τ
τ+γ

(Keeling & Grenfell 2000; Green et al. 2006). For a specified ρ0, the corresponding

edge-based transmission rate τ can be calculated as τ = γ ρ0

〈k〉−ρ0
(Green et al. 2006).

In the case of proportionate random mixing, p(i|j) = ip(i)/〈k〉. In this case, it can be

shown that I2 = T 2 〈k2〉 (Appendix 1; Kao, 2006). In general, Ig+1/Ig is constant for any

higher value of g and therefore R0 = T
〈k2〉
〈k〉 . The calculation should ideally be modified for

undirected networks to account for a node losing a connection upon becoming infected from

its parent case (Kiss et al., 2006). In this, case R0 = T
(
〈k2〉
〈k〉 − 1

)
. Note that this correction is

not applied to ρ0, where infection of the focal node is assumed to happen ‘by magic’, not

infection from a linked node.

These expressions account for degree heterogeneity (Anderson & May, 1991), but are

only appropriate where there is no higher-level network structure in the form of clustering

(Keeling, 1999) or assortativity (Anderson et al. 1990). A further measure is given by the

lead eigenvalue of the network adjacency matrix, λ (Diekmann & Heesterbeek, 2000),

whose value differs from the previous where the network is broken into dissimilar

components (Green et al., 2009).

3 Results

Networks formed through the iterative algorithm have a slower increase in χ with path

length ε and longer mean path lengths, compared to networks with similar parameter

formed through the rewired fixed-degree networks (Fig. 3), even for χ(2), which is in a

sense another measure of the degree of local clustering. Examining other network

properties, no difference was found in the levels of clustering at the level of squares
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(proportion of quadruples a, b, c, d with edges (a, b), (b, c) and (c, d) that are also squares

with edge (a, d)) with coefficients of C¤ = 0.44 and 0.43 respectively. However, an interesting

difference was found in the distribution of triangles at the node level (the numbers of triples

being fixed at k(k − 1) = 20), with those of the iterative networks having lower variance

despite the same mean (17.6 versus 25.3). Local triangle counts were correlated between

connected nodes, but there was no difference in the degree of correlation between network

types (r ≈ 0.6). That different measures of clustering are not consistent with each other is

not unexpected: the several ‘traditional’ clustering measures (Soffer & Vázquez, 2005)

deviate from each other in different network architectures.

The correlation sum of the spatial networks alone shows a trend close to a straight

line on the log-log plot (Fig. 3). All other network types show exponential increase (straight

line on semi-log plot, Fig. 3, inset) in proportion of network reached with distance. The

spatial networks are therefore the only ones showing finite dimension, and power-law

epidemic spread is expected to be a better model of infection than exponential in epidemics

growing on these networks (Szendröi & Csányi, 2004). The ordering of the correlation sum

plot slopes is reflected in the timescale of epidemic simulations shown in Fig. 4. In both

plots, the slower rise of the spatial networks in terms of potential epidemic spread is seen,

even for a particular level of clustering, and a lower rise for the clustered networks

themselves.

In network-based models of disease transmission, connected components (CCs) play

an important role (Newman et al., 2001; Newman, 2002; Kenah & Robins, 2007a,b).

Disease seeded into any node in a CC can potentially reach any other node in that

component. Thus, for undirected networks, provided that each link will transmit the

infection, the size of the largest or giant CC (GCC) represents the upper limit for the

potential size of an epidemic. However, for any network only a subset of all edges will be

involved in the transmission process. To account for edges that will not be involved in

disease transmission, the contact network can be de-constructed or diluted by removing a

proportion 1− p (0 ≤ p ≤ 1) of edges at random (Cohen et al., 2002). This gives rise to a

network that can be regarded as the ‘epidemiological network’ of truly infectious links (Kao

et al., 2006).
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The emergence and growth of the GCC can be investigated by increasing the value of

p. In Fig. 5, the size of the GCC is plotted as a function of p for different network types. For

spatial networks with high clustering, the GCC is only present for values of p that are

considerably higher compared to the case of the re-clustered version of the same network,

the spatial network with no clustering, and the unclustered version of the spatial network

but with mixing preserved. This indicates that the structure of spatial network limits the

epidemic spread and this effect is stronger than for networks with exactly the same level of

clustering but obtained using the reclustering algorithm. Similar arguments hold for

networks with fixed degree. However, for group-based networks the situation changes and

the GCC emerges for smaller values of p compared to the case of group-based networks

with no clustering. In a previous paper Kiss & Green (2008) have shown that this is a direct

consequence of higher clustering leading to higher degree heterogeneity. Although, the GCC

appears for smaller values of p as clustering increases, its size is limited and stays relatively

small when compared to the unclustered case.

For the case of spatial networks, in Fig. 6 the cumulative frequency of the CCs is

plotted for below and above percolation regimes. The percolation threshold is given by the

value of p at which the GCC emerges (i.e. when the size of the GCC is comparable to the

network size in the limit of an infinite network). Here we do not focus on the exact

percolation threshold but rather on how components grow and connect together to form the

GCC. Fig. 5(a) illustrates that for unclustered networks, the percolation is sharper with a

clear transition from having CCs of very small sizes to a single large GCC. However, for high

levels of clustering (C = 0.6), the transition is less sharp with CCs continuing to grow almost

independently and only merging in a single large GCC for high values of p (see Fig. 5(b)).

This illustrates how clustering promotes the local growth of sub-clusters with few

inter-cluster links that can lead to a single large component spanning most of the network.

In Table 1, numerical estimates for various R0-like quantities are given. Apart from

χ(2)−χ(1)
χ(1)−χ(0)

all measures are based on the assumption of large networks with no loops.

Moreover, 〈k
2〉
〈k〉 is only valid when networks are proportionally mixed. However, the value of

λ and the generation-based approach captures any departure from proportionate mixing, as

demonstrated by the positive correlation between these and the mixing measure r. For the
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group-based model, high clustering leads to high contact heterogeneity but no assortativity.

Contact heterogeneity alone gives larger R0 values and a fast spreading epidemic between

the subset of highly connected nodes. This is reflected in high values of almost all measures.

The eigenvalue approach does particularly well to capture the low level of assortativity

generated by high levels of clustering in random or Poisson networks.

4 Discussion

Our results demonstrate that networks exhibiting similar levels of clustering, but generated

by different algorithms, can differ significantly in their large-scale structure. This has

implications for the spread of disease on such networks. Moreover, tuning a particular

network property can lead to undesired but significant changes in network properties other

than that of interest, and in a different manner for different network construction

algorithms. This hinders accurate determination of the effect of different network properties

on the dynamical processes the network supports.

To more accurately capture heterogeneity in contact at the level of individuals,

models of disease transmission on contact networks – either data based or theoretical – have

become more common. While accurate network data are difficult to collect, many

theoretical network models have been developed simply based on partial information or

general network characteristics (e.g. small-world networks (Watts & Strogatz, 1998) with

short path length and high clustering). Our R0-like parameter estimates above fall into this

category: they are an attempt to summarise the ability of the network to support an

epidemic by extracting partial information from it. The information retained and utilised

varies between measures, and thus so does the applicability of the measure to different

network types. The ability of the measures presented above to capture particular network

properties is summarised in Table 2.

The equivalence of various epidemiological network measures is epidemic model- (or

rather, disease) dependent. For example, though we define ρ0 as the number of secondary

cases from a randomly chosen index case, with exponentially distributed infectious periods

this is in practice an overestimate in individual-based model simulations, since the index

case competes with its own secondary cases (and later) for other secondary cases to infect.
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The same principle applies to R0. This effect is present in our network simulations as well as

the mean-field model (Appendix 2) and is particularly strong in clustered networks and a

large seeding population, but absent in discrete generation-based models.

Many assumptions are implicit in formulations of network epidemic models such as

that presented above. For example, we assume that all edges have equal weight and that

this is not affected by the number of connections an individual makes, as might be the case

under the frequency dependent model paradigm. Other measures of clustering giving

different weightings to nodes with dissimilar k may be more appropriate for other network

types. We also assume exponentially distributed infectious period lengths, a distribution

with a long tail and thus much overlap of generations of infection. With many such other –

often more biologically appropriate – approaches available, there is always the danger of

letting ‘the tail wag the dog’, that is being driven by what we usually model, rather than

being driven by modelling epidemic problems that need solutions.

Simple analytical approaches can aid the analysis of complex networks. For example,

Newman (2002) showed that under some appropriate conditions the transmission of

diseases on networks is equivalent to a bond-percolation problem with the possibility to

analytically or semi-analytically compute outbreak threshold and outbreak size distribution.

Kenah & Robins (2007 a, b) have later on expanded on the precise conditions for such an

agreement between the two approaches to hold. However, all these approaches are based on

the assumptions of infinite networks with no loops and in some cases proportionate or

random mixing. Nevertheless, such theoretical models provide a useful starting point for

investigating the effect of any departure from the idealized network models.

Clustering is a local property and the triangular sub-graph structure and their

frequency has been generalised to motifs (e.g. four nodes in a line or connected in a circle),

widely studied in the context of red systems biology (Milo et al., 2002). For example, for

gene regulatory networks, certain motifs are more abundant in the network compared to

what would be expected at random and these frequently re-occuring small structures are

regarded as the building block of networks. For our particular case, different

network-generating algorithms could lead to more frequently observing motifs composed of

four or more nodes. However, we found no difference in clustering at the level of squares
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between iterative and fixed-degree networks. Future work could examine the presence and

frequency other larger motifs that could be a by-product of the generating algorithms and

could have significant effect on disease transmission.

An important aspect of many disease transmission models is the exploration of the

efficacy of different control measures. For example, previous studies have shown that this

strongly depends on disease characteristics and contact network properties: Contact tracing

performs better on clustered networks (Eames & Keeling 2003; Kiss et al., 2005) where the

redundant local links offer multiple opportunities to trace and isolate individuals who have

been in contact with infectious individuals. Similarly, with STIs on assortatively mixed

networks, contact tracing must be performed quickly or at least at a level that is comparable

to the rate of disease transmission (Kiss et al, 2008). Such studies are often based on

theoretical network models and focus on investigating the effect of a particular network

property. In this paper we have shown that theoretical network models must be used with

care and that the analysis of the network itself merits as careful consideration as the

dynamical processes that the networks support. Combining network measures that focus on

local node properties with large-scale network measures can improve the transparency and

accuracy of modelling predictions.

5 Appendices

5.1 Generation-based network approach

Following on from the main text, where we let Ii,g denote the number of infected nodes of

degree i in generation g, Ii,g+1 is given by

Ii,g+1 =
∞∑

j=0

Tjp(i|j)Ij,g,

where p(i|j) is the probability that a node with with j contacts is connected to a node with i

contacts. In the case of proportionate random mixing, p(i|j) = ip(i)/ 〈k〉. Hence, given

random seeding of initial cases in the zeroth generation such that Ij,0 = p(j), the number of
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individuals with degree i in the first generation is

Ii,1 =
∑

j

Tj
ip(i)

〈k〉 Ij,0 =
Tip(i)

∑
j jp(j)

〈k〉 = Tip(i)

while in the second generation this is

Ii,2 =
∑

j

Tj
ip(i)

〈k〉 Ij,1 =
T 2ip(i)

∑
j j2p(j)

〈k〉 =
T 2〈k2〉
〈k〉 ip(i).

Summation according to i gives I1 = T 〈k〉 and I2 = T 2 〈k2〉. Dividing I2 by I1 we obtain the

standard estimate for R0.

5.2 Generation-based mean-field model

The mean-field SIR model can be posed in a way in which the generations of infection may

be identified. The infected compartment I is subdivided into compartments indexed by the

generation of infection g ∈ N0. Infection by generation g produces infected individuals at

generation g + 1, with therefore no flow into the g = 0 index case compartment. As usual, β

and γ represent the infection and removal rates.

dIg

dt
= βSIg−1 − γIg g > 0

dIg

dt
= −γIg g = 0

dS

dt
= −β

∑
g Ig

dRg

dt
= γIg

Solving this model for β = 3 and γ = 1, and an initial infected population of I0,0 = 0.0001,

we obtain a final state of R1,∞ = 0.000295, suggesting a value of R0 = 2.95, less than the

theoretical value of R0 = β/γ = 3. This theoretical value is approached as I0,0 approaches

zero.
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Figure 1: Rewiring algorithm step for generating clustering.
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a) b)

c) d)

Figure 2: Sample networks with N = 500, 〈k〉 = 5 and C = 0.6. a) iterative algorithm; b)
rewire to cluster from constant k; c) spatial and d) this network reclustered.
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C = 0.6; solid grey: fixed degree C = 0; thin solid: iterative C = 0.6; black dashed: spatial
C = 0.6; grey dashed: spatial reclustered C = 0.6; thin dashed: spatial unclustered preserving
mixing; grey dotted: Poisson; black short dash: group-based C = 0.6; grey short dash: group-
based reclustered C = 0.6. 〈k〉 = 5 throughout.
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Figure 4: Time series for simulated epidemic. Results are mean prevalence for 10 simulations
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in the legend; throughout, 〈k〉 = 5.
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Figure 5: The size of the giant connected component (GCC) for increasing probability p of
links being present. (a) spatial C = 0 (black continuous), C = 0.6 (black dashed), reclustered
C = 0.6 (grey dashed) and unclustered preserving mixing (grey continuous), (b) fixed degree
C = 0 (black continuous) and C = 0.6 (black dashed), and (c) group-based C = 0 (black
continuous), C = 0.6 (black dashed) and reclustered C = 0.6 (grey dashed). All simulations
based on networks with 〈k〉 = 5.
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Figure 6: Cumulative distribution of the connected component size for the spatial network
model with c = 0.0 (a) and c = 0.6 (b). Results are based on the outcome of 10000 sim-
ulations (100 simulations on 100 different networka). (a) Below percolation for p = 0.05,
0.1, 0.15, 0.2 (black: dotted, short dashed, long dashed and solid) and above percolation
for p = 0.25, 0.3, 0.35 (grey: long dashed, short dashed, dotted). (b) Below percolation for
p = 0.45, 0.5, 0.55, 0.6 (black: dotted, short dashed, long dashed and solid) and above perco-
lation for p = 0.65, 0.7, 0.75 (grey: long dashed, short dashed, dotted). All simulations based
on networks with 〈k〉 = 5.
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Table 1: Basic statistics of constructed networks for 〈k〉 = 5. Clustering coefficient C, mixing

measure r, ratio of degree distribution first two moments 〈k
2〉
〈k〉 , lead Eigenvalue of adjacency

matrix λ, ratio of nodes within two and one step from focal node χ(2)−χ(1)
χ(1)−χ(0)

, and the next-

generation matrix estimate R0 ∼ I2
I1

are shown.

Network C r
〈k2〉
〈k〉 λ χ(2)−χ(1)

χ(1)−χ(0)
I2
I1

Fixed degree 0.00 – 5.0 5.0 4.0 5.0

Fixed degree, clustered 0.60 – 5.0 5.0 1.4 5.0

Iterative, clustered 0.61 – 5.0 5.0 1.1 5.0

0.21 – 5.0 5.0 3.0 5.0

Spatial, clustered 0.58 0.583 6.0 11.0 1.3 7.2

Spatial, reclustered 0.60 0.072 6.0 7.8 1.4 6.1

. . . unclustered preserving mixing 0.00 0.583 6.0 8.9 4.9 7.2

Spatial, no clustering 0.00 0.000 6.0 6.2 5.0 6.0

Group-based, clustered 0.61 0.000 14.0 14.7 5.0 14.0

Group-based, unclustered 0.01 0.000 6.5 6.7 5.4 6.5

Poisson, clustered 0.60 0.072 6.0 7.8 1.5 6.0

0.40 0.030 6.0 6.9 2.6 6.0

0.20 0.007 6.0 6.3 3.8 6.0

. . . no clustering 0.00 0.000 6.0 6.2 5.0 6.1

Table 2: Sensitivity of network measures to network properties (see caption to Table 1 for

definitions). A tick indicates the indicated measure is sensitive to differences in the indicated

network property.

Property 〈k〉 〈k2〉
〈k〉 λ χ(2)−χ(1)

χ(1)−χ(0)
I2
I1

simulation

Degree X X X X X X
Degree heterogeneity X X X X X
Clustering X X
Overlap of generations X
Non-random mixing X X X X
Community structure X X
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