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Chapter 0: Introduction

A huge number of real-life situations can be modelled mathe-
matically, and many of these are probabilistic (as opposed to
deterministic). The course Probability Models, as well as giving
a rigorous introduction to probability, introduced some exam-
ples of such models (mainly in discrete time), e.g. discrete-time
Markov chains.

Random Processes follows on from Probability Models, in-
troducing continuous-time probabilistic models. We deal with
several different types of process in continuous time, giving a ba-
sic introduction to the processes that we are trying to model, the
assumptions of the model, an analysis of the model and mathe-
matical examples of how to use the model in each case. Work is
divided into six chapters (after this one) which are summarised
as follows:

Chapter 1, Poisson processes. This is the simplest
continuous-time process: points occur at random in time at
a constant rate (e.g. radioactive emissions). We ask questions
such as:

what is the distribution of the number of points to have
occurred before time t?

Chapter 2, Birth processes. We model a population of or-
ganisms each of which gives birth at a constant rate, so that
the average rate of population increase is proportional to pop-
ulation size. This is not a realistic population model, since the
population size always increases, but is a good place to start to
develop more complex models. We also deal with death processes
where the population decreases. These form building blocks for
the models of Chapter 3.

Chapter 3, Birth and death processes. We combine birth or
immigration with death so that, unlike Chapter 2, the population
is not monotone increasing or monotone decreasing. We consider
important features such as the probability of the population be-
coming extinct (birth-death model), and consider equilibrium
distributions (immigration-death model). We discover an inter-
esting relationship between the birth and death process and the
random walk.

Chapter 4, Queues. We meet queues in many aspects of our
lives: banks, telephone systems, etc. This chapter introduces a
way of modelling queues mathematically using three key features:
the method of arrival (usually a Poisson process), the distribu-
tion of the time it takes to serve a customer (e.g. exponential,
constant), and the number of servers. Several different types of
queue are considered. We ask questions such as the following.

What is the average queue size?
How long does a customer have to wait?
What proportion of the time will a server be idle?

Chapter 5, Renewal processes. We model a sequence of time
points separated by independent identically distributed waiting
times. For example, a machine has a vital component which
must be replaced every time it burns out, a point of the process
being the failure of this component.

How many such events do we expect in a given length of
time?

We model discrete and continuous processes. We consider the
equilibrium renewal process:

what is the expected total lifetime of the component cur-
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rently in use if we arrive at the machine at a random time?
How much longer do we expect this component to last?

Chapter 6, Epidemics. Epidemics have had catastrophic ef-
fects throughout history. We consider two models of epidemics,
the simple epidemic and the general epidemic. For the general
epidemic,

what is the expected number of people to catch the disease?
What is the probability that everyone catches it?

3



Chapter 1: Poisson processes

1.1 Assumptions of the Poisson process

We model a situation where the time instants that we’re inter-
ested in occur spontaneously, at random. Examples are

the emissions of α-particles in a radioactive experiment,
arrivals of customers at a post office,
the passing of cars on a quiet road.

The important feature of these time instants or time points is
that they are unpredictable (they occur ‘at random’).

How do we model such a process? Modelling Bernoulli trials,
we assume that there is a constant probability of success and that
events are independent. We make these assumptions in this case,
too. Here we are modelling a situation in continuous time, where
the time instants or points of the process can occur at any time.
Thus these assumptions become:

(a) the average rate λ at which points occur is constant over
time (not true for post office customers over a whole day,
but good enough for a half hour period);

(b) the occurrence of points after time t is independent of what
happened up to time t;

(c) we also assume that points can only occur singly (never ≥ 2
simultaneously).

Consider what happens in a short time interval of length δt.
Suppose that the probability of one point in (t, t+ δt] is p(δt).

The rate of occurrence of points is λ, and so

p(δt)

δt
→ λ (δt ↓ 0).

This says p(δt) = λδt+ o(δt), where

o(δt)

δt
→ 0 (δt ↓ 0).

In general we shall use o(δt) for any function for which this is
true. For instance 2(δt)2 is o(δt). This useful concept occurs
throughout the course.

Definition 1.1.1. A Poisson process of rate λ is a process
X = (X(t))t≥0 taking values in S = {0, 1, 2, . . .} such that

(a) X(0) = 0; if s < t then X(s) ≤ X(t);
(b) as δt ↓ 0,

P (X(t+ δt) = x+m|X(t) = x)

=


λδt+ o(δt) if m = 1,
o(δt) if m > 1,
1− λδt+ o(δt) if m = 0.

(c) if s < t then X(t)−X(s), the number of points in the time
interval (s, t], is independent of the process prior to s.

We will consider two random variables:

X(t), the number of points that occur in (0, t];
T , the time until the first point occurs.

1.2 The probability function of X(t)

For simplicity, we shall write px(t) for P (X(t) = x).

Theorem 1.2.1. X(t) has a Poisson distribution with param-
eter λt.

Proof.

p0(t+ δt)
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= P (no points by time t+ δt)

= P (no points in (0, t])P (no points in (t, t+ δt])

= p0(t)
(
1− λδt+ o(δt)

)
.

Therefore

p0(t+ δt)− p0(t)

δt
= −λp0(t) +

o(δt)

δt
.

Letting δt ↓ 0, we obtain

p′0(t) = −λp0(t).

Thus

p′0(t)

p0(t)
= −λ;

∴ ln p0(t) = −λt+ c.

And

p0(0) = 1 =⇒ c = 0 =⇒ ln p0(t) = −λt;

i.e. p0(t) = e−λt. So the probability of X(t) taking the value 0 is
that from the required Poisson distribution.

In general,

px(t+ δt)

= P (x points by time t+ δt)

= P (x points in (0, t])P (no points in (t, t+ δt])

+ P (x− 1 points in (0, t])P (one point in (t, t+ δt])

+ P (x− 2 points in (0, t])P (two points in (t, t+ δt])

+ . . .

= px(t)
(
1− λδt+ o(δt)

)
+ px−1(t)

(
λδt+ o(δt)

)
+ o(δt).

Therefore

px(t+ δt)− px(t)
δt

= λ
(
px−1(t)− px(t)

)
+

o(δt)

δt
.

Letting δt ↓ 0, we obtain

p′x(t) = λ
(
px−1(t)− px(t)

)
.

We know that px(t) is of the right form for x = 0. Assume that
it is also in the right form for x− 1, i.e.

px−1(t) = e−λt
(λt)x−1

(x− 1)!
.

Thus

p′x(t) + λpx(t) = λe−λt
(λt)x−1

(x− 1)!
.

Multiply by the integrating factor eλt:

eλtp′x(t) + λeλtpx(t) = λx
tx−1

(x− 1)!
.

So

px(t)e
λt = λx

tx

x!
+ C;

px(t) =
(λt)x

x!
e−λt + Ce−λt.

Now px(0) = 0 for x > 0, so C = 0. Thus we have shown by
induction that

px(t) = e−λt
(λt)x

x!
(x = 0, 1, 2, . . .).

�

5



Example 1.2.2. Fax messages arrive at an office according to
a Poisson process at mean rate three per hour.

(a) What is the probability that exactly two messages are re-
ceived between 9.00 and 9.40?

(b) What is the probability that no messages arrive between
10.00 and 10.30?

(c) What is the probability that not more than three messages
are received between 10.00 and 12.00?

Solution. Let an hour be the unit of time that we work with.
Thus we have a Poisson process of rate λ = 3. The number of
messages in time t is thus Pois(3t) distributed.

(a) 9.00 to 9.40: the number of messages has distribution
Pois

(
3× 2

3

)
= Pois(2), so

P (2 messages) = e−2 22

2!
l 0·271.

(b) 10.00 to 10.30: the number of messages has distribution
Pois(3× 0·5) = Pois(1·5), so

P (0 messages) = e−1·5 l 0·223.

(c) 10.00 to 12.00: the number of messages, N say, has distri-
bution Pois(3× 2) = Pois(6), so

P (N ≤ 3)

= P (N = 0) + P (N = 1) + P (N = 2) + P (N = 3)

= e−6 60

0!
+ e−6 61

1!
+ e−6 62

2!
+ e−6 63

3!
= e−6(1 + 6 + 18 + 36) = 61e−6 l 0·151.

�

1.3 The distribution function of T

T is the time until the next point of the process from a given
starting time. As the process is ‘memoryless’ it does not matter
when this starting time is. T is a continuous random variable,
unlike X(t), which is discrete.

Consider the event {T > t}, i.e. the event that T is larger
than some specified t. This is identical to {X(t) = 0}, the event
that there is no point of the process up to time t. Thus

P (T > t) = P (X(t) = 0) = e−λt.

The distribution function of T is thus P (T ≤ t) = 1 − e−λt, i.e.
T has an exponential distribution with parameter λ.

Example 1.3.1. In Example 1.2.2, what is the probability that
the first message after 10.00 occurs by 11.00?

Solution. We have a Poisson process of rate 3 per hour and
want the probability that the interval from our chosen starting
time until the first point of the process is at most 1 hour, so

P (T ≤ 1) = 1− e−3×1 l 0·9502.

�

1.4 The pooled Poisson process

Suppose that a bank branch has k service points in use and op-
erates with a single long queue, so that when a server finishes
serving a customer the person at the head of the queue replaces
that customer. Further suppose that each service time is ex-
ponential with parameter λ, independently of all other service
times.
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The time that a person spends at the head of the queue
depends upon k Poisson processes each with parameter λ.

FIGURE

Let T be the length of the waiting time for the person at the
front of the queue until service starts. If Ti is the time until the
person currently at server i is served, then T = min(T1, . . . , Tk).
So

P (T > t) = P (min(T1, . . . , Tk) > t)

= P (T1 > t, T2 > t, . . . , Tk > t)

= P (T1 > t)P (T2 > t) · · ·P (Tk > t)

= e−λt × · · · × e−λt = e−kλt,

i.e. P (T ≤ t) = 1− e−kλt. Thus T is exponential with parameter
kλ. Equivalently T is the time to the first point of a Poisson
process of rate kλ.

Definition 1.4.1. k Poisson processes are said to be indepen-
dent if the points in one process during any interval are inde-
pendent of the points in any of the other processes during any
intervals.

Consider k independent Poisson processes, where process i
has rate λi. We shall use the original formulation of the Poisson
process to show that if we consider all the points they occur
according to a single pooled process.

Theorem 1.4.2. If k independent Poisson processes with rates
λ1, . . . , λk occur simultaneously, the combined points follow a
Poisson process with rate λ1 + · · ·+ λk.

Proof. In the interval (t, t+ δt],

P (one point of type i occurs) = λiδt+ o(δt);

P (more than one point of type i occurs) = o(δt);

P (no points of type i occur) = 1− λiδt+ o(δt).

Combining these events, no points occur if and only if no points
of type i occur for all i, i.e.

P (no point)

=
(
1− λ1δt+ o(δt)

)
· · ·
(
1− λkδt+ o(δt)

)
= 1− λ1δt− · · · − λkδt+ o(δt)

= 1− (λ1 + · · ·+ λk)δt+ o(δt).

One point of any type can occur in any of k ways: 1 point of
type i and no points of any other type, for each i, i.e.

P (one point)

=
(
λ1δt+ o(δt)

)(
1− λ2δt+ o(δt)

)
· · ·
(
1− λkδt+ o(δt)

)
+
(
1− λ1δt+ o(δt)

)(
λ2δt+ o(δt)

)
· · ·
(
1− λkδt+ o(δt)

)
+ · · ·
+
(
1− λ1δt+ o(δt)

)(
1− λ2δt+ o(δt)

)
· · ·
(
λkδt+ o(δt)

)
= λ1δt+ · · ·+ λkδt+ o(δt)

= (λ1 + · · ·+ λk)δt+ o(δt).

Finally the probability that more than one point occurs is one
minus the probability that either no points or one point occurs,
i.e.

P (more than one point)

= 1−
(
1− (λ1 + · · ·+ λk)δt+ o(δt)

)
7



−
(
(λ1 + · · ·+ λk)δt+ o(δt)

)
= o(δt).

Thus we have satisfied condition (b) in our definition of a Poisson
process of rate λ1 + · · ·+ λk. Condition (a) is satisfied trivially,
and since all the individual processes are independent and obey
(c) the combined process also obeys (c). �

Example 1.4.3. In the same office as in the previous two ex-
amples, telephone messages arrive at the mean rate of six per
hour.

(a) Find the probability that exactly two messages (phone or
fax) are received between 9.00 and 9.40.

(b) Find the probability that the first message after 10.00 occurs
before 10.10.

Solution.

(a) We have two independent Poisson processes with rates 3 and
6 respectively, i.e. the pooled process has rate 3 + 6 = 9. So
in a 40-minute period, the number of calls follows a Poisson
distribution with parameter

9× 2

3
= 6.

Therefore

P (X = 2) = e−6 62

2!
l 0·0446.

(b)

P (first message after 10.00 is before 10.10)

= P (T ≤ 1/6)

= 1− e−9×1/6 = 1− e−3/2 l 0·7769.

�

1.5 Breaking down a Poisson process

Suppose that a Poisson process is occurring and that a point can
be of k different types. For example, traffic passes us as a Poisson
process and we record whether each car is European, American,
Japanese or some other.

Suppose that we know that the probability that a point is of
type i is pi for i = 1, . . . , k, where

∑
pi = 1. Assume that the

type of any given point is independent of the type of all other
points.

Consider the occurrence of points of type i:

P (1 point occurs in (t, t+ δt], and it’s of type i)

= P (1 point occurs)P (point is of type i|1 point occurs)

=
(
λδt+ o(δt)

)
pi.

Now for one point of type i to occur in (t, t+ δt], either it’s the
only point in the time-interval, as above, or it’s one of several
points of the overall Poisson process to occur. The latter event
has probability o(δt). So

P (1 point of type i occurs in (t, t+ δt])

=
(
λδt+ o(δt)

)
pi + o(δt)

= piλδt+ o(δt).

On the other hand,

P (more than 1 point of type i occurs in (t, t+ δt])

≤ P (more than 1 point occurs in (t, t+ δt]) = o(δt),
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and finally

P (0 points of type i occur in (t, t+ δt])

= 1−
(
piλδt+ o(δt)

)
− o(δt)

= 1− piλδt+ o(δt).

Thus points of type i occur according to a Poisson process with
rate λpi. The single Poisson process is thus equivalent to a pooled
process of k independent Poisson processes.

Example 1.5.1. Customers arrive at a bank according to a
Poisson process at a mean rate of ten per minute. A proportion
0·6 wish to draw out money (type A), 0·3 wish to pay in money
(type B) and 0·1 wish to do something else (type C).

(a) What is the probability that at least 5 customers arrive in
30 seconds?

(b) What is the probability that in one minute, six customers of
type A, three of type B and one of type C arrive?

(c) If twenty customers arrive in two minutes, what is the prob-
ability that just one is of type C?

(d) What is the probability that the first three customers of the
day want to draw out money?

(e) How long a time must elapse before there is a probability of
0·9 that at least one customer each of types A and B will
have arrived?

Solution.

(a) The number of customers, N say, is Poisson with parameter
10× 0·5 = 5, so

P (N ≥ 5) = 1−
4∑
i=0

P (N = i)

= 1−
4∑
i=0

5i

i!
e−5 = 1− 523

8
e−5 l 0·5595.

(b) Customers of type A arrive according to a Poisson process
of rate 0·6×10 = 6. The number of customers in a minute is
thus Poisson parameter 6. Similarly for type B the number
of customers is Poisson with parameter 3 and for type C
the number of customers is Poisson with parameter 1. The
probability of 6 As, 3 Bs and 1 C is then

P (6A, 3B, 1C) = e−6 66

6!
e−3 33

3!
e−1 11

1!

=
1458

5
e−10 l 0·0132.

(c) Twenty points have occurred, and the time of their occur-
rence is irrelevant. Each customer has a probability of 0·1
of being of type C. Thus we have a Binomial distribution,
and

P (1 C out of 20) =

(
20

1

)
(0·1)(0·9)19 l 0·270.

(d) The probability of any particular customer being of type A
is 0·6. Thus the probability that the first three are of type
A is (0·6)3 = 0·216.

(e) Let t denote the required time. The two processes are inde-
pendent, so that

P ( ≥ 1A, ≥ 1B) = P ( ≥ 1A)P ( ≥ 1B)

= (1− e−6t)(1− e−3t).

9



Letting y = e−3t, we need to solve

(1− y2)(1− y) = 0·9;

i.e.
y3 − y2 − y + 0·1 = 0.

A solution may be found iteratively using, for example, the
Newton-Raphson method, giving y l 0·092, i.e. t l 0·795
minutes (about 48 seconds).

�
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Chapter 2: Birth processes

2.1 The simple birth process

Consider a population where each individual alive in the popu-
lation generates further offspring according to a Poisson process
at rate β (new individuals are produced asexually). We assume
that the initial population size is x0 and that there are no deaths,
so that the population increases with time.

This is not a very realistic model, but it serves as a starting
point. If the size of the population at time t is x, then we have x
different Poisson processes each with rate β. When considering
the next birth we thus have a pooled Poisson process with rate
xβ (until the next arrival, when this becomes a Poisson process
with rate (x+ 1)β). So we have

P (X(t+ δt) = x+ 1|X(t) = x) = βxδt+ o(δt);

P (X(t+ δt) = x|X(t) = x) = 1− βxδt+ o(δt);

P (X(t+ δt) = y|X(t) = x) = o(δt) for other y,

where X(t) is the population size at time t.

To find the distribution ofX(t) we proceed as before and find
differential-difference equations. Note that at t = 0 there must
be at least one member of the population, otherwise X(t) = 0
for all t, and since there are no deaths, X(t) ≥ 1 for all t. Again
letting P (X(t) = x) be represented by px(t),

px(t+ δt) =
x∑

y=x0

P (X(t+ δt) = x|X(t) = y)P (X(t) = y),

since X(t) is an increasing function which is never 0. Thus

px0(t+ δt) = px0(t)(1− βx0δt+ o(δt));

∴ p′x0
(t) = −βx0px0(t). (2.1.1)

So ln px0(t) = −βx0t + c. Since the initial population size is x0,
px0(0) = 1, and so c = 0, giving

px0(t) = e−βx0t.

For general x, P (X(t+ δt) = x|X(t) = y) = o(δt) if y is not
x or x− 1, i.e.

px(t+ δt) = px(t)
(
1− βxδt+ o(δt)

)
+ px−1(t)

(
β(x− 1)δt+ o(δt)

)
+ o(δt),

and so

px(t+ δt)− px(t)
δt

= −βxpx(t) + β(x− 1)px−1(t) +
o(δt)

δt
;

∴ p′x(t) = −βxpx(t) + β(x− 1)px−1(t)

(x = x0, x0 + 1, . . .). (2.1.2)

Theorem 2.1.1. The distribution of X(t) is given by

px(t) =

(
x− 1

x0 − 1

)
e−βtx0(1− e−βt)x−x0 (x = x0, x0 + 1, . . .).

This is sometimes called a ‘negative binomial distribution
with scale parameter e−βt and index parameter x0’. However
the name is better used for the distribution of X(t)− x0, taking
values in {0, 1, 2, . . .}.

If x0 = 1, the distribution of X(t) becomes

px(t) = e−βt(1− e−βt)x−1 (x = 1, 2, . . .),

sometimes called the ‘geometric distribution with parameter
e−βt’. However, again the name is better used for the distribu-
tion of X(t)− 1, taking values in {0, 1, 2, . . .}.
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Proof. We know that px0(t) = e−βx0t, which is of the correct
form for x = x0. We again suppose that the solution is of the
correct form for x− 1, i.e.

px−1(t) =

(
x− 2

x0 − 1

)
e−βtx0(1− e−βt)x−1−x0 .

This gives

p′x(t) + βxpx(t)

= β(x− 1)
(x− 2)!

(x0 − 1)!(x− x0 − 1)!
e−βtx0(1− e−βt)x−x0−1.

Multiplying by the integrating factor eβxt we obtain

d

dt

(
px(t)e

βxt
)

=
(x− 1)!

(x0 − 1)!(x− x0 − 1)!
βeβt(x−x0)(1− e−βt)x−x0−1,

so

px(t)e
βxt

=
(x− 1)!

(x0 − 1)!(x− x0 − 1)!

∫
βeβt(eβt − 1)x−x0−1 dt+ A

=
(x− 1)!

(x0 − 1)!(x− x0)!

∫
(x− x0)(eβt − 1)x−x0−1βeβt dt+ A

=

(
x− 1

x0 − 1

)
(eβt − 1)x−x0 + A.

Therefore

px(t) =

(
x− 1

x0 − 1

)
e−βtx(eβt − 1)x−x0 + Ae−βtx,

and A = 0 since px(0) = 0 for x > x0. The theorem is proved by
induction. �

Example 2.1.2. A population starts at time 0 with a single
individual. Let the birth rate be two per week.

(a) What is the probability that after three weeks there are ex-
actly two individuals?

(b) What is the probability that after one week there are be-
tween two and four individuals (inclusive)?

Solution.

(a) x0 = 1, β = 2 per week, and t = 3, i.e.

p2(3) =

(
1

0

)
e−2×3(1− e−2×3)1

= e−6(1− e−6) l 0·00247.

(b) x0 = 1, β = 2, t = 1, so

P (2 ≤ X ≤ 4)

= P (X = 2) + P (X = 3) + P (X = 4)

= e−2(1− e−2) + e−2(1− e−2)2 + e−2(1− e−2)3

l 0·3057.

�

2.2 The pure death process

We consider a population in which there are no births, just
deaths. Observations start with x0 individuals alive at time 0—
these individuals die independently of each other, and eventually
the population dies out completely.

12



In a similar way to the simple birth process, we assume that
the probability of an individual dying in time interval (t, t + δt]
is νδt+ o(δt).

Some questions of interest are

What is the distribution of the population size at time t?
How long does it take the population to die out?

This model is approached best by considering every individ-
ual separately. The probability that a given individual is alive at
time t, which we label Pa(t), is found as follows. The probability
that the individual, if alive at time t, is still alive at time t+ δt
is one minus the probability that it dies in this interval, so that

P (alive at t+ δt|alive at t) = 1− νδt+ o(δt);

∴ Pa(t+ δt) = Pa(t)
(
1− νδt+ o(δt)

)
;

∴ P ′a(t) = −νPa(t).

This differential equation has solution Pa(t) = Ae−νt = e−νt

since the individual is alive at time 0 with probability 1. We can
use the binomial theorem to deduce that the probability that j
individuals are still alive at time t is given by

pj(t) =

(
x0

j

)
(e−νt)j(1− e−νt)x0−j .

In particular the probability that the population is extinct by
time t is

p0(t) = (1− e−νt)x0 .

Example 2.2.1. A population starts at time 0 with 4 individ-
uals. The population follows a pure death process at a rate of 1

every 2 days.

(a) Find the probability that there is exactly one individual alive
after a week.

(b) Find the probability that the population has died out after
a week.

(c) Find the probability that the population has died out after
two weeks, given that the total number of survivors after one
week was 2.

Solution. x0 = 4, ν = 0·5 per day.

(a) t = 7, so

p1(7) =

(
4

1

)
e−3·5(1− e−3·5)3 l 0·1102.

(b) Again t = 7, so

p0(7) = (1− e−3·5)4 l 0·8846.

(c) The process is memoryless, so that

P (0 after 2 weeks|2 after 1 week)

= P (0 after 1 week|2 after 0 weeks)

= (1− e−3·5)2 l 0·9405.

�
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Chapter 3: Birth and death processes

3.1 Introduction

We shall now consider a population model, similar to those of
the last chapter, but with both births and deaths. In the Poisson
process and the simple birth process the only change possible is
an increase in the population. In the pure death process the
population could only be reduced. Here both may occur.

Let py,x(t, t+ δt] be the probability that the population size
changes from y at time t to x at time t+ δt. This probability is
negligible (o(δt)) unless y = x or x ± 1, since the probability of
more than one point of the process occurring is negligible.

Let the birth rate at X = x be βx, and the death rate be νx.
Both βx and νx depend upon x. Thus

px−1,x(t, t+ δt] = βx−1δt+ o(δt);

px+1,x(t, t+ δt] = νx+1δt+ o(δt); (3.1.1)

px,x(t, t+ δt] = 1− βxδt− νxδt+ o(δt).

Note that all of the models that we have considered up until now
are special cases of the birth-death process:

Poisson process βx = λ, νx = 0;
Simple birth process βx = βx, νx = 0;
Pure death process βx = 0, νx = νx.

Thus in all the previous models either βx or νx is zero.

3.2 The Kolmogorov equations

Remember that we define the function px(t) = P (X(t) = x). For
each value of x,

P
(
X(t+ δt) = x

)

=
∞∑
k=0

P (X(t) = k)P (X(t+ δt) = x|X(t) = k),

or in our simpler notation,

px(t+ δt) =
∞∑
k=0

pk(t)pk,x(t, t+ δt].

These are the Chapman-Kolmogorov equations.

Substituting (3.1.1) in them gives

px(t+ δt) = px−1(t)βx−1δt

+ px(t)(1− βxδt− νxδt) + px+1(t)νx+1δt+ o(δt),

whence

px(t+ δt)− px(t)
δt

= px−1(t)βx−1 − px(t)(βx + νx) + px+1(t)νx+1 +
o(δt)

δt
.

Therefore

p′x(t) = px−1(t)βx−1 − px(t)(βx + νx) + px+1(t)νx+1

(x = 0, 1, 2, . . .).

Note that we define p−1(t) = 0. This term occurs in the equation
for x = 0, but isn’t really there.

These are the Kolmogorov forward equations (there are also
the Kolmogorov backward equations, but we shall not discuss
them in this course).

By assigning values to βx and νx we can obtain specific
differential-difference equations for any particular process of this
type.
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Example 3.2.1. What are the Kolmogorov forward equations
for

(a) the Poisson process?
(b) the simple birth process?

Solution.

(a) βx = λ, νx = 0, p0(0) = 1. Thus

p′0(t) = −λp0(t),

p′x(t) = λpx−1(t)− λpx(t) (x = 1, 2, . . .),

which are indeed the equations that we found in Chapter 1.
(b) βx = βx, νx = 0, px0(0) = 1, so

p′x0
(t) = −βx0px0(t),

p′x(t) = β(x− 1)px−1(t)− βxpx(t)
(x = x0 + 1, x0 + 2, . . .),

which are again the equations found in Chapter 2; see (2.1.1)
and (2.1.2).

�

3.3 The simple birth-death process

In the previous chapter we considered the simple birth process
and the pure death process. Now we shall combine the two.

In the simple birth process, each individual gives birth at
rate β, so that when the population is of size x, the birth rate
is βx. In the pure death process individuals die at rate ν, so
that the death rate is νx. We wish to find an expression for
X(t), the number of individuals alive at time t. We shall find
the probability generating function for X(t).

Substituting βx for βx and νx for νx in the Kolmogorov
equations gives

p′0(t) = νp1(t).

p′x(t) = px−1(t)β(x− 1)− px(t)(βx+ νx) + px+1(t)ν(x+ 1)

(x = 1, 2, . . .),

Thus

∞∑
x=0

p′x(t)s
x =

∞∑
x=1

β(x− 1)px−1(t)sx −
∞∑
x=1

(β + ν)xpx(t)s
x

+
∞∑
x=0

ν(x+ 1)px+1(t)sx

=
∞∑
y=0

βypy(t)s
y+1 −

∞∑
x=1

(β + ν)xpx(t)s
x

+
∞∑
y=1

νypy(t)s
y−1

= βs2

∞∑
x=1

xpx(t)s
x−1 − (β + ν)s

∞∑
x=1

xpx(t)s
x−1

+ ν
∞∑
x=1

xpx(t)s
x−1.

Now we introduce the probability generating function (p.g.f.) of
X(t):

Π(s, t) = EsX(t)

=
∞∑
x=0

sxP (X(t) = x) =
∞∑
x=0

sxpx(t) (|s| ≤ 1).
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The above is then just

∂Π

∂t
=
(
βs2 − (β + ν)s+ ν)

∂Π

∂s
.

We shall simply state the solution, which can be verified by sub-
stitution. There are two different cases;

Π(s, t) =


(
ν(1− s)− (ν − βs)e(ν−β)t

β(1− s)− (ν − βs)e(ν−β)t

)x0

if β 6= ν,(
βt− sβt+ s

βt− sβt+ 1

)x0

if β = ν.

Note that all the required information about X(t) is in the p.g.f.
and that no two discrete distributions can have the same p.g.f.
We proceed to extract some of this information.

We can rewrite the probability generating function as

Π(s, t) =

(
a− bs
c− ds

)x0

,

where a, b, c, d are all functions of t. When x0 = 1 we have

Π(s, t) =
a− bs
c− ds

=
a− bs
c

(
1− ds

c

)−1

=
a− bs
c

∞∑
i=0

(
ds

c

)i
=
a

c
+
∞∑
i=0

si+1

(
−b
c

(
d

c

)i
+
a

c

(
d

c

)i+1
)

=
a

c
+
∞∑
j=1

sj
(
d

c

)j−1
ad− bc
c2

.

Thus, using the generating function to find the probabilities of
the different population sizes,

P (X(t) = 0) =
a

c
,

P (X(t) = j) =

(
d

c

)j−1
ad− bc
c2

(j = 1, 2, . . .),

which is similar to a geometric distribution, except that we have
an added probability of 0.

Let us suppose that β 6= ν. Letting p = e(ν−β)t, we have
a = ν − νp, b = ν − βp, c = β − νp and d = β − βp.

Exercise 3.3.1. For both β > ν and β < ν, show that

0 <
d

c
< 1

for t > 0, and so the above expansion gives a valid distribution.

Exercise 3.3.2. Show that ad− bc = p(ν − β)2.

Thus we have

p0(t) =
ν(1− p)
β − νp

, (3.3.1)

px(t) =

(
β(1− p)

)x−1
p(ν − β)2

(β − νp)x+1
(x = 1, 2, . . .). (3.3.2)

If x0 > 1 then each individual can be thought of as the
founder of its own dynasty, and so X(t) is the sum of x0 inde-
pendent observations from the above distribution.

If β = ν then when x0 = 1,

Π(s, t) =
βt− sβt+ s

βt− sβt+ 1
=
a− bs
c− ds

,
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and so a = βt, b = βt− 1, c = 1 + βt, d = βt, and again c > d,
giving

p0(t) =
βt

1 + βt
, px(t) =

(βt)x−1

(1 + βt)x+1
(x = 1, 2, . . .).

Example 3.3.3. Find the mean and variance of a random vari-
able with p.g.f.

Π(s) =
a− bs
c− ds

,

and hence find the mean and variance of the simple birth-death
process with β = ν.

Solution.

Π′(s) =
−(c− ds)b+ (a− bs)d

(c− ds)2
=

ad− bc
(c− ds)2

,

∴ Π′′(s) =
2d(ad− bc)
(c− ds)3

.

Letting s ↑ 1 we obtain

EX =
ad− bc
(c− d)2

,

and varX = Π′′(1) + EX − (EX)2, so

varX =
2d(ad− bc)

(c− d)3
+
ad− bc
(c− d)2

− (ad− bc)2

(c− d)4
.

For the simple birth-death process with β = ν, we have ad−bc =
1 and c− d = 1, so that EX(t) = 1 and varX(t) = 2d+ 1− 1 =
2βt, if x0 = 1. This implies that for a population starting with
x0 individuals,

EX(t) = x0, varX(t) = 2x0βt.

�

3.4 Simple birth-death: extinction

The probability of the population being extinct at time t is
P (X(t) = 0) = p0(t), which is Π(0, t) since

Π(s, t) =
∞∑
x=0

px(t)s
x.

The probability that the population eventually becomes extinct
is thus limt→∞ p0(t) = limt→∞Π(0, t). Recall that if ν 6= β then

Π(s, t) =

(
ν(1− s)− (ν − βs)e(ν−β)t

β(1− s)− (ν − βs)e(ν−β)t

)x0

.

If ν > β, then as t→∞, e(ν−β)t →∞ and so Π(0, t)→ 1.

If ν < β, then as t→∞, e(ν−β)t → 0 and so

Π(0, t)→
(
ν

β

)x0

.

If ν = β then

Π(0, t) =

(
βt

βt+ 1

)x0

=

(
β

β + t−1

)x0

→ 1

as t→∞.

Thus if β ≤ ν, the population is certain to become extinct.

Note that if β > ν, letting t→∞ we obtain

lim
t→∞

Π(s, t) =

(
ν

β

)x0
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for every value of s ∈ [0, 1). But for a p.g.f., lims↑1 Π(s) = 1 and
so this limit is not a proper p.g.f. (letting s→ 1 first gives a dif-
ferent result!). In fact the probability of the population having a
finite size in the limit is the same as the probability of extinction.
This is because as t tends to infinity, either the population goes
extinct or becomes very large, and the probability of it taking
any given finite value except 0 tends to zero.

We have considered the probability that a population be-
comes extinct, but also of interest is the time to extinction. A
population may be certain to become extinct but have a high
probability of lasting a long time before that extinction occurs.
Letting T be the time to extinction,

P (T ≤ t) = P (X(t) = 0),

the probability that the population has no members at time t.
We know that if x0 = 1, then

P (X(t) = 0) = p0(t) =
ν(1− p)
β − νp

(p = e(ν−β)t, β 6= ν).

Considering the population as the combination of x0 different
sub-populations starting with one individual, the probability
that there are no individuals in the whole population is the prob-
ability that there are none in any of the sub-populations, which
is to say

P (T ≤ t) =

(
ν(1− p)
β − νp

)x0

=

(
ν(1− e(ν−β)t)

β − νe(ν−β)t

)x0

.

If β < ν, P (T ≤ t)→ 1 as t→∞ so extinction is certain and T
has a proper distribution.

If β > ν, P (T ≤ t)→ (ν/β)x0 as t→∞ so extinction is not
certain and T does not have a proper distribution.

If β = ν then

P (T ≤ t) =

(
βt

1 + βt

)x0

→ 1 (t→∞).

It is easy to show that although extinction is certain in this case,
the expected time to extinction is infinite.

Example 3.4.1. If a population has birth rate β = 3, death rate
ν = 2 and starts with x0 = 4 individuals, what is the probability
that it will be extinct

(a) by time 1?
(b) by time 3?
(c) at all?

Find P (T ≤ 3|becomes extinct).

Solution.

(a)

P (T ≤ 1) =

(
2(1− e−1)

3− 2e−1

)4

l 0·0972.

(b)

P (T ≤ 3) =

(
2(1− e−3)

3− 2e−3

)4

l 0·1843.

(c)

P (extinction) =

(
2

3

)4

l 0·1975.
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Finally,

P (T ≤ 3|extinction) =
P (T ≤ 3 and extinction)

P (extinction)

=
P (T ≤ 3)

P (extinction)
l

0·1843

0·1975
= 0·933.

Thus if the population does become extinct, it is likely to happen
early. �

3.5 An embedded process

Suppose that we are not interested in the time of a particular
point of the process, but only in its type (is it a birth or a
death?). Relabelling the time of the ith point as i, we obtain a
new random process (Xi)i=0,1,2,... in discrete time. This process
is said to be embedded in the original process, i.e. is an embedded
process. Xi is the size of the embedded process at time i, and of
the population immediately after the ith change.

In this case all we are concerned with is the probability that
the next point will be a birth. This is

βx
βx + νx

=
βx

βx+ νx
=

β

β + ν
.

We write

p =
β

β + ν
, q = 1− p =

ν

β + ν
.

Thus we have a simple random walk with

P (Xi = x+ 1|Xi−1 = x) = p, P (Xi = x− 1|Xi−1 = x) = q,

and an absorbing barrier at zero (which is a gambler’s ruin prob-
lem). This means that we can use standard results such as the

following.

If the gambler starts with j units of money and has proba-
bility of winning each game p, then the probability that the
gambler is ruined is

(
q

p

)j
if p > q,

1 otherwise.

This is equivalent to the probability of extinction with

j = x0, p =
β

β + ν
=⇒ q =

ν

β + ν
.

Thus the probability of extinction is
(
ν

β

)x0

if β > ν,

1 otherwise.

The expected duration of the whole game (before the gam-
bler is ruined) is 

j

q − p
if p < q,

∞ if p ≥ q.

So for a simple birth-death process starting with x0 individ-
uals, the expected number of points of the process to extinction
is 

x0(ν + β)

ν − β
if β < ν,

∞ if β = ν.
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It is obviously infinite for β > ν, since there is a positive proba-
bility that the population will never go extinct.

In the classical gambler’s ruin problem, there are two players
with £m between them, so that the probability that our
gambler wins is the probability that (s)he reaches m before
0, which, starting at j ≤ m, is

1−
(
q
p

)j
1−

(
q
p

)m if p 6= q,

j

m
if p = q.

This corresponds exactly to the probability that the size of
our population reaches m ≥ x0 individuals at some point (before
possibly becoming extinct), which thus has probability

1−
(
ν
β

)x0

1−
(
ν
β

)m if β 6= ν,

x0

m
if ν = β.

Example 3.5.1. If a simple birth-death process starts with
x0 = 5 individuals, what is the probability that it reaches 10
given that it becomes extinct, in the cases

(a) β = 4, ν = 6?
(b) β = 9, ν = 6?

Solution.

(a)

P (reaches 10) =
1−

(
6
4

)5
1−

(
6
4

)10 l 0·1164.

The process is certain to become extinct, so that

P (reaches 10|becomes extinct) = P (reaches 10)

l 0·1164.

(b)

P (reaches 10) =
1−

(
6
9

)5
1−

(
6
9

)10 l 0·8836.

Now

P (reaches 10|becomes extinct)

=
P (extinction|reaches 10)P (reaches 10)

P (extinction)
,

and

P (extinction) =

(
6

9

)5

l 0·1317,

P (extinction|reaches 10) =

(
6

9

)10

l 0·0173,

so

P (reaches 10|becomes extinct) =
0·0173× 0·8836

0·1317
= 0·116.

So if we know that the population becomes extinct, it is
unlikely to have reached 10 before doing so.

�
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3.6 The immigration-death model

In the immigration-death model, individuals join the population
according to a Poisson process with parameter λ, and live an
exponential amount of time with parameter ν. We shall only
briefly look at this model.

It’s a realistic model for some practical situations, e.g. the
number of gas molecules in a particular volume of space, the
number of people in a shop.

A feature of the model is that there is no extinction: new
individuals will keep arriving. Similarly the population will not
tend to infinity since νx = νx will eventually overpower βx = λ
as x becomes large.

The Kolmogorov equations give

p′0(t) = νp1(t)− λp0(t),

p′x(t) = λpx−1(t)− (λ+ νx)px(t) + ν(x+ 1)px+1(t)

(x = 1, 2, . . .).

We can sensibly consider an equilibrium distribution for this
model, since the population can neither become extinct nor tend
to infinity. Setting

p′x(t) = 0 ∀x,

and letting px represent the equilibrium probability of the pop-
ulation being of size x, we obtain

νp1 − λp0 = 0 =⇒ p1 =
λ

ν
p0

and

λpx−1 − (λ+ νx)px + ν(x+ 1)px+1 = 0 (x = 1, 2, . . .).

Note that if λpx−1 = νxpx then λpx = ν(x+ 1)px+1, which is the
same expression with x replaced by x + 1. Since this is true for
x = 1, it is true for all x and so

px =
λ

ν

px−1

x
=⇒ px =

(
λ

ν

)x
p0

x!
.

We need this to be a proper probability distribution, i.e.

1 =
∞∑
x=0

px = p0

∞∑
x=0

1

x!

(
λ

ν

)x
= p0e

λ/ν .

So

px = e−λ/ν
1

x!

(
λ

ν

)x
(x = 0, 1, 2, . . .),

which is a Poisson distribution with parameter λ/ν.

Example 3.6.1. For an immigration-death process with immi-
gration rate 6 per week and death rate 10 per year, what are the
mean and variance of the population size X?

Solution. λ = 6× 52 = 312 per year, ν = 10 per year, so

λ

ν
=

312

10
= 31·2.

Thus we have a Poisson distribution with parameter 31·2 so that
the mean and variance of X are both 31·2. �
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Chapter 4: Queues

4.1 Introduction

In many aspects of everyday life we encounter queues: telephone
queueing systems (becoming increasingly common), bank/shop
queues, traffic jams, queues of aircraft circling an airport, etc.
Patients have to ‘queue’ to wait for an operation. Sometimes we
can see the size of the queue, sometimes not. It may or may not
be possible to make a good guess at the length of the time to
wait. We may not have to wait at all, or the queue could be so
long that we decide to give up and try again some other time.

From the point of view of the server/shop owner it might be
important to consider breaks (when nobody is queueing) or the
possibility that arrivals come too quickly to be served (i.e. the
queue gets longer and longer and/or people give up).

The queueing process is unpredictable in that the rate of
customer arrivals and the time it takes for a customer to be
served are both random. It is of interest to model queues as a
random process because they are common and because some of
the parameters can be controlled, e.g. by varying the number of
servers, so it would be useful to understand the consequences of
such variations.

There are three features of a queue which we shall consider
(in reality, of course, there are many):

The arrival mechanism—how do customers arrive, singly or
in groups, randomly or by appointment?
The service time—constant or random, what distribution?
The number of servers.

Another question is that of queue discipline. Are customers
served in the actual order by which they arrive? If there is a

single queue in a bank, the answer is usually yes, but in a pub
there is often a random element (which person the barman sees
first) or a not-so-random element (Joe might be served earlier
because he’s in there every day). We shall assume that customers
are served strictly in the order of arrivals.

If there is more than one server, we assume a central queue-
ing system, so that customers move forward as servers become
free.

We shall consider only queueing models formed by varying
the three features mentioned above. In general we assume that
arrivals occur singly and at random.

A queue will be characterised as follows to describe its three
features. Firstly we specify the inter-arrival time, e.g. Poisson
process/exponential, written as M (for Markovian), deterministic
(fixed interval) D, general (unspecified) G, etc. Similarly we
specify the service time. Finally we state the number of servers.

Example 4.1.1. A local bank has two cash dispensers. A
customer arrives and joins a central queue for both machines
(or uses a machine if one is free). Assuming it always takes
the same time to use a machine, and that customers arrive at
random, specify the queueing system.

Solution. ‘Arrive at random’ means arrivals are a Poisson
process, ‘M’. Service time constant: ‘D’. Two servers. The queue
is M/D/2. �

4.2 The simple queue
Customers arrive singly, independently of one another at a ser-
vice point. We assume that they arrive as a Poisson process,
with arrival rate λ. This is equivalent to the distribution of the
inter-arrival time being exponential with parameter λ.
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This is a reasonable model for banks and supermarkets, but
not for cinemas, where arrivals cluster near the time when films
start.

If the server is free, the customer goes straight to the server
and is served immediately. Otherwise they join the end of the
queue. Customers are served in the order of their arrival. We
define the following.

The service time is the time the customer takes to be served
once he/she reaches the server.
The waiting time is the time for all customers ahead of the
new arrival to be served (including the one at the server).
The queueing time = waiting time + service time.

Suppose that the service time is distributed exponentially,
with parameter µ (i.e. customers leave according to a Poisson
process if the queue is non-empty). µ is the service rate of the
queue.

For our simple model, the queue specification is M/M/1.
This is called the simple queue.

4.3 Queue size

We shall consider the size of the queue at time t (this is of par-
ticular interest to a customer arriving at time t). Queue size
(including the customer being served if there is one) is an integer-
valued random process

(
X(t)

)
t≥0

.

This can be modelled in a similar way to the birth and death
process. Let px(t) = P (X(t) = x) and consider an arrival as
a birth and a departure as a death. The general Kolmogorov
equations are

p′x(t) = βx−1px−1(t)− (βx + νx)px(t) + νx+1px+1(t)

(x = 0, 1, 2, . . .),

where β−1 = p−1(t) = 0. For the simple queue, βx = λ for all
x ≥ 0 and νx = µ for all x > 0. Thus

p′0(t) = −λp0(t) + µp1(t).

p′x(t) = λpx−1(t)− (λ+ µ)px(t) + µpx+1(t) (x = 1, 2, . . .),

This turns out to be a difficult set of equations to solve. We shall
consider a more tractable problem.

In general we are interested in how the queue behaves after
a long time; e.g. will the server be overwhelmed and if not what
does the steady state distribution of the queue size look like?

To find a steady state, we must set all the derivatives in the
Kolmogorov equations to zero, giving

−λp0 + µp1 = 0,

λpx−1 − (λ+ µ)px + µpx+1 = 0 (x = 1, 2, . . .).

The latter gives λpx−1 − µpx = λpx − µpx+1 for x = 1, 2, . . . ,
and the former says that this quantity equals 0. Thus

px+1 =
λ

µ
px (x = 0, 1, 2, . . .),

i.e.

px =

(
λ

µ

)x
p0 (x = 0, 1, 2, . . .).

Then (if λ < µ)

1 =
∞∑
x=0

px =
∞∑
x=0

(
λ

µ

)x
p0 =

1

1− λ/µ
p0,
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and so p0 = 1− λ/µ. Thus

px =

(
1− λ

µ

)(
λ

µ

)x
(x = 0, 1, 2, . . .).

Setting ρ = λ/µ, this says

px = (1− ρ)ρx (x = 0, 1, 2, . . .).

This is a steady-state distribution if and only if λ < µ; otherwise
no steady state exists. ρ = λ/µ is the traffic intensity of the
queue.

Example 4.3.1. Suppose that the arrival and departure of
customers at a village post office may be modelled as a simple
queue, and that customers arrive every 12 minutes on average.

(a) What is the condition for the queue to attain stochastic equi-
librium?

(b) For (b)–(d) assume the mean service time is 8 minutes.
What proportion of the time is the counter empty?

(c) What is the average queue length?
(d) If you enter the post office (some time after it has opened),

what is the probability that there are more than two people
in the queue already?

Solution.

(a) λ = 1/12. Thus we need µ > 1/12, i.e. the expected service
time must be less than 12 minutes.

(b) µ = 1/8, so

P (X = 0) = 1− λ

µ
= 1−

1/12

1/8
= 1− 2

3
=

1

3
.

(c) The mean queue length is

∞∑
x=0

xpx =
∞∑
x=0

x(1− ρ)ρx

= (1− ρ)ρ
∞∑
x=1

xρx−1

= (1− ρ)ρ
1

(1− ρ)2
=

ρ

1− ρ
=

2/3

1− 2/3
= 2.

(d)

P (X > 2) = 1− p0 − p1 − p2

= 1− 1

3
− 1

3

(
2

3

)
− 1

3

(
2

3

)2

= 1− 1

3
− 2

9
− 4

27
=

8

27
l 0·296.

�

We’ll now consider the distribution of the queueing time
(waiting time + service time).

The waiting time depends upon the size of the queue. If
there are x > 0 in the queue, the waiting time is the time to
serve the person at the head of the queue (who may have been
there some time) plus the time to serve the other x − 1. Since
our service times are exponential, however, they have the lack of
memory property and so the distribution of the remaining time
to serve the first person is still Expon(µ). Thus the waiting time
is the sum of x independent random variables, each Expon(µ)-
distributed.
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This conclusion remains true when x = 0. In all cases the
queueing time is thus the sum of x + 1 independent Expon(µ)-
distributed random variables, and so has the Gamma distribu-
tion Γ(x+ 1, µ).

For the queue in equilibrium, let f(t) denote the density of
the queueing time. Let fx(t) denote the density conditional upon
the queue size being x. Then

fx(t) =
µx+1txe−µt

x!
(t > 0),

so

f(t) =
∞∑
x=0

fx(t)P (X = x)

=
∞∑
x=0

µx+1txe−µt

x!

(
1− λ

µ

)(
λ

µ

)x
= µe−µt

(
1− λ

µ

) ∞∑
x=0

(λt)x

x!

= µe−µt
(

1− λ

µ

)
eλt = (µ− λ)e−(µ−λ)t,

so the queueing time for a typical customer is exponential, with
parameter µ− λ.

Another feature of interest is the busy period, the time spent
serving customers between successive periods of rest.

If λ > µ then initially there may be times when the queue
is empty, but eventually there will be a busy period which
never ends.
λ = µ gives a strange situation, where any busy period is
certain to end, but the expected length of time to this ending

is infinite.
λ < µ means that alternating periods of rest/busy periods
are certain.

The last case is the one of interest, where the queue is stable.
Consider that case. Because the probability that the server is
unoccupied (‘idle’) at any given time is p0 = 1 − ρ, in a long
period of time T the server will be idle for approximate time
length (1− ρ)T .

An arrival terminates a period of idleness, so that periods of
idleness are Expon(λ). So the number of idle intervals in time T
is approximately

(1− ρ)T
1/λ

= λ(1− ρ)T.

Busy periods alternate with periods of rest, so that there are
λ(1 − ρ)T such periods during the total busy time ρT , so the
average length of a busy period is

ρT

λ(1− ρ)T
=

λ/µ

λ(1− λ/µ)
=

1

µ− λ
.

Note that this is equal to the expected time that a customer
would have to spend in a queue.

The expected number of customers served in a busy period
is given, roughly, by the expected number of arrivals divided by
the expected number of busy periods, which is

λT

λ(1− ρ)T
=

1

1− ρ
=

µ

µ− λ
.

4.4 The M/M/n queue
We shall expand the ‘simple queue’ model to include more than
one server (in reality a single server is relatively rare, except in
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the smallest shops). We assume a central queue where, when a
server becomes free, the head of the queue goes to that server.
Thus for an n-server queue we need over n people ‘in the queue’
to have any real queueing at all. People begin to be served in
the order of their arrival, although they may finish out of turn.
We assume that each server has the same service rate µ.

We shall again find the differential-difference equations for
the number X(t) in the queue.

Note that the rate of service depends upon the queue length,
namely νx = xµ if x < n, but νx = nµ if x ≥ n, since all the
servers are occupied. Thus

p′0(t) = −λp0(t) + µp1(t),

p′x(t) = λpx−1(t)− (λ+ xµ)px(t) + (x+ 1)µpx+1(t)

(x = 1, 2, . . . , n− 1),

p′x(t) = λpx−1(t)− (λ+ nµ)px(t) + nµpx+1(t)

(x = n, n+ 1, . . .).

To find the steady state, we set all the above derivatives to zero,
giving first

p1 =
λ

µ
p0.

Next, λpx−1 − xµpx = λpx − (x + 1)µpx+1 for x = 1, . . . , n− 1,
and this equals 0 by the above, so that

px+1 =
λ

(x+ 1)µ
px,

i.e.

px =

(
λ

µ

)x
1

x!
p0 (x = 0, 1, . . . , n).

If x ≥ n then λpx−1 − nµpx = λpx − nµpx+1, which again
equals 0 by the above, and so

px+1 =
λ

nµ
px,

∴ px =

(
λ

nµ

)x−n
1

n!

(
λ

µ

)n
p0

=

(
λ

nµ

)x
nn

n!
p0 (x = n, n+ 1, . . .).

This sequence converges if and only if λ < nµ, which is thus the
condition for a steady-state distribution to exist.

Finally we must find the value of p0. We require the proba-
bilities to add to 1, so

p0

(
1 +

n−1∑
x=1

(
λ

µ

)x
1

x!
+
∞∑
x=n

(
λ

nµ

)x
nn

n!

)
= 1,

∴ p0 =

(
1 +

n−1∑
x=1

(nρ)x

x!
+

(nρ)n

n!(1− ρ)

)−1

where

ρ =
λ

nµ

is the traffic intensity (note: redefined) of the process.

Because of the complexity of the above, we shall leave the
term p0 in our expressions for the equilibrium probabilities,
which are thus

px =


p0
nx

x!
ρx for x = 0, 1, . . . , n− 1,

p0
nn

n!
ρx for x = n, n+ 1, . . . .
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For example, if there are two servers, i.e. n = 2,

p0 =

(
1 + 2ρ+

(2ρ)2

2!(1− ρ)

)−1

=
1− ρ

(1− ρ)(1 + 2ρ) + 2ρ2
=

1− ρ
1 + ρ

,

and so

p1 =
2ρ(1− ρ)

1 + ρ
, px =

2ρx(1− ρ)

1 + ρ
(x = 2, 3, . . .).

The expectation of X is thus given by

EX =
∞∑
x=1

x
2ρx(1− ρ)

1 + ρ
=

2ρ(1− ρ)

1 + ρ

∞∑
x=1

xρx−1

=
2ρ(1− ρ)

1 + ρ

1

(1− ρ)2
=

2ρ

1− ρ2
.

Example 4.4.1. Customers enter a supermarket at a rate of
three per minute, each customer taking an average of two min-
utes to serve.

(a) What is the minimum number of servers to make the queue
stable?

(b) If there are eight checkouts, what proportion of customers
receive immediate service?

Solution. λ = 3, µ = 1/2.

(a) For equilibrium we need

λ

nµ
< 1 =⇒ 3

1
2
n
< 1 =⇒ n > 6,

so that 7 servers are required.

(b) If there are 8 servers, the probability of being served imme-
diately is the probability that there are 7 customers or less
upon arrival. Now

ρ =
λ

nµ
=

3
1/2× 8

=
3

4
=⇒ nρ = 6.

so

P (≤ 7 customers) = p0 + p1 + · · ·+ p7

= p0

(
1 + 6 +

62

2!
+

63

3!
+

64

4!
+

65

5!
+

66

6!
+

67

7!

)
=

2101

7
p0.

Therefore

p0 =

(
2101

7
+

68

8!(1− 3/4)

)−1

=
35

16337
.

So the probability of being served immediately is

10505

16337
l 0·643.

�

We now consider the waiting time. Suppose that when a
customer arrives, there is a queue of length x ahead of him or
her.

If x < n then the waiting time is zero and the customer goes
straight to a server. Denoting the waiting time by T , we thus
have

P (T = 0) = P (X < n) = 1− P (X ≥ n) = 1− p0
(nρ)n

n!(1− ρ)
.

27



Otherwise n customers are being served and x−n are ahead
of the customer in the queue, so that 1 + x− n more departures
are required before the customer is served. There are n servers,
so that departures occur as a Poisson process with rate nµ.

If f(t) is the density of T , excluding the case T = 0 above,
and f(t|x) the density of T conditional onX taking value x(≥ n),
then

f(t) =
∞∑
x=n

f(t|x)P (X = x). (4.4.1)

When X = x ≥ n, the arriving customer must wait for 1 +x−n
departures, each of which is Expon(nµ) distributed, so that the
waiting time is Γ(1 + x− n, nµ). Thus

f(t|x) =
tx−ne−nµt(nµ)1+x−n

(x− n)!

=
tye−nµt(nµ)1+y

y!
where y = x− n.

Substituting into (4.4.1) yields

f(t) =
∞∑
y=0

tye−nµt(nµ)1+y

y!
p0
nnρn+y

n!

= nµp0
(nρ)n

n!
e−nµt

∞∑
y=0

(tnµρ)y

y!

= nµp0
(nρ)n

n!
e−nµtenµtρ

= p0µ
(nρ)n

(n− 1)!
e−nµ(1−ρ)t,

which is of exponential form.

Note that this will integrate to a number less than 1, namely
to 1− P (T = 0).

Thus the waiting time is a combination of a discrete and a
continuous random variable. The queueing time is just the sum
of this waiting time and an independent exponential random
variable with parameter µ.

4.5 The M/M/∞ queue

If the number of servers is so large it can be assumed to be
infinite, then no customer ever has to wait. Note that this would
not be viable for a shop to put into practice, in general.

This is exactly the same process as the immigration-death
process from the previous chapter. In a steady state the queue
size thus has a Poisson distribution with parameter λ/µ, i.e.

P (X = x) = e−λ/µ
(
λ

µ

)x
1

x!
(x = 0, 1, 2, . . .).

We now go on to consider queues where the service time is
not exponentially distributed. We first consider the case when it
is constant.

4.6 The M/D/1 queue

The assumptions of the M/D/1 queue are as follows.

(1) Customers arrive according to a Poisson process.
(2) There is a single server.
(3) It takes exactly the same time to serve each customer.

We denote the service time by T = 1/µ (equivalent to a service
rate of µ, since ET = 1/µ for the M/M/1 queue).

An example for which this is a reasonable model is customers
arriving at a cash machine. Every customer inputs a PIN num-

28



ber, asks for a given amount of cash and waits for the cash to be
delivered. The time taken is roughly the same for all customers.

We again wish to find the probability px(t) that there are
exactly x people in the queue at time t. We know that every
service takes exactly 1/µ units of time, so that in the interval
(t, t+ 1/µ] exactly one customer is served, unless the queue was
empty at time t, in which case no customers will be served in
the interval.

Suppose that the number of arrivals in (t, t+ 1/µ] is A, then
A has a Poisson distribution with parameter ρ = λ/µ. If the
number in the queue at time t is x, the number at time t+ 1/µ
is {

X
(
t+ 1/µ

)
= 0 + A = A if X(t) = x = 0,

X
(
t+ 1/µ

)
= x+ A− 1 if X(t) = x > 0.

The approach to finding px(t) will be different from before. We
shall use the natural relationship between px(t) and px(t+ 1/µ).
First,

p0(t+ 1/µ) = p0(t)P (A = 0) + p1(t)P (A = 0)

=
(
p0(t) + p1(t)

)
e−ρ.

Similarly

p1(t+ 1/µ)

= p0(t)P (A = 1) + p1(t)P (A = 1) + p2(t)P (A = 0)

=
(
p0(t) + p1(t)

)
ρe−ρ + p2(t)e−ρ.

In general

px(t+ 1/µ)

= p0(t)P (A = x) + p1(t)P (A = x)

+ p2(t)P (A = x− 1) + · · ·+ px+1(t)P (A = 0)

= e−ρ
((
p0(t) + p1(t)

)ρx
x!

+ p2(t)
ρx−1

(x− 1)!
+ · · ·+ px+1(t)

)
,

for x = 0, 1, . . . .

To find the steady state we set px(t) = px(t+ 1/µ) = px for
all x, so that

px = e−ρ

(
p0
ρx

x!
+

x+1∑
j=1

pj
ρx+1−j

(x+ 1− j)!

)
(x = 0, 1, 2, . . .).

Once again considering probability generating functions,

∞∑
x=0

pxs
x = e−ρ

∞∑
x=0

(
p0
ρx

x!
+

x+1∑
j=1

pj
ρx+1−j

(x+ 1− j)!

)
sx.

In the inner sum on the right, set i = j − 1:

Π(s) = e−ρp0e
ρs + e−ρ

∞∑
x=0

x∑
i=0

pi+1
ρx−i

(x− i)!
sx

= e−ρ(1−s)p0 + e−ρ
∞∑
i=0

∞∑
x=i

pi+1
ρx−i

(x− i)!
sx

= e−ρ(1−s)p0 + e−ρ
∞∑
i=0

pi+1s
ieρs

= e−ρ(1−s)p0 + e−ρ(1−s)
Π(s)− p0

s

= e−ρ(1−s)
(
p0

(
1− 1

s

)
+

Π(s)

s

)
.
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Therefore

seρ(1−s)Π(s) = −p0(1− s) + Π(s)

∴ Π(s) =
p0(1− s)

1− seρ(1−s)
.

To specify the p.g.f. completely we must find the value of p0.
Rearranging the above expression gives

Π(s)(1− seρ(1−s)) = p0(1− s).

Differentiating:

Π′(s)(1− seρ(1−s))− Π(s)(1− ρs)eρ(1−s) = −p0. (4.6.1)

Setting s = 1 gives

−(1− ρ) = −p0.

So p0 = 1− ρ, and we obtain finally

Π(s) =
(1− ρ)(1− s)

1− seρ(1−s)
.

We shall now find the mean of this distribution. Differenti-
ating (4.6.1) again gives

Π′′(s)(1− seρ(1−s))− 2Π′(s)(1− ρs)eρ(1−s)

+ Π(s)(2ρ− ρ2s)eρ(1−s) = 0.

Setting s = 1, and using again Π(1) = 1 and now also Π′(1) =
EX,

−2(1− ρ)EX + 2ρ− ρ2 = 0.

So

EX =
2ρ− ρ2

2(1− ρ)
=
ρ− ρ2/2

1− ρ
.

The waiting time (and hence the queueing time) can be con-
sidered as follows. A customer arriving at random is equally
likely to arrive at any point during the 1/µ it takes the current
customer to be served, i.e. if the queue length is x > 0, the total
waiting time is

(x− 1)
1

µ
+ Unif

(
0,

1

µ

)
,

which has expectation (
x− 1

2

)
1

µ
.

Thus the expected queueing time is

1

µ
+ E(waiting time) =

1

µ
+ 0× p0 +

∞∑
x=1

(
x− 1

2

)
1

µ
px

=
1

µ
+

1

µ

∞∑
x=1

xpx −
1

2µ

∞∑
x=1

px

=
1

µ
+
EX

µ
− 1− p0

2µ

=
1

µ

(
1 +

ρ− 1
2
ρ2

1− ρ
− ρ

2

)
=

2− ρ
2µ(1− ρ)

.

Note that the expected waiting time is

2− ρ
2µ(1− ρ)

− 1

µ
=

ρ

2µ(1− ρ)
.

4.7 The M/G/1 queue
This queue has a single server and arrivals occur as a Poisson
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process, as in the M/M/1 and M/D/1 queues. Here however
the distribution of the service time is left unspecified. We again
consider only the equilibrium distribution.

Let T have the service-time distribution. During a service
time T , a random number A of customers arrive, and given T ,
A is Pois(λT ) distributed. The Pois(θ) distribution has p.g.f.
e−θ(1−s), because

∞∑
j=0

e−θ
θj

j!
sj = e−θ

∞∑
j=0

(θs)j

j!
= e−θeθs = e−θ(1−s),

so

E(sA|T ) = e−λT (1−s) (|s| ≤ 1).

It follows that A has p.g.f.

EsA = E
(
E(sA|T )

)
= Ee−λT (1−s) (|s| ≤ 1).

Let Qn be the number of customers remaining in the system
(waiting, or being served) just after the departure of the nth

customer.

If Qn > 0 then the (n+ 1)th customer begins service imme-
diately, and A customers arrive during this service time. So the
(n + 1)th customer leaves A + Qn − 1 customers on departure.
If Qn = 0, then the server waits for the (n + 1)th arrival, thus
leaving 1 + A− 1 = A customers on departure. So

Qn+1 =

{
A+Qn − 1 if Qn > 0,
A if Qn = 0.

The sequence of random variables (Q1, Q2, . . .) is thus a Markov
chain. What are its transition probabilities? We’ve just seen
that this chain can go up any distance in one transition, but

down only by single steps. So

P (Qn+1 = j)

=

j+1∑
i=0

P (Qn = i)P (Qn+1 = j|Qn = i)

= P (Qn = 0)P (A = j) +

j+1∑
i=1

P (Qn = i)P (A = j − i+ 1).

For a steady state we require that P (Qn+1 = j) = P (Qn = j) =
pj , say. Letting

δi = P (A = i) (i = 0, 1, 2, . . .),

we obtain

pj = p0δj +

j+1∑
i=1

piδj−i+1 (j = 0, 1, 2, . . .). (4.7.1)

We want to solve these for pj = P (Q = j), the stationary
distribution of Q, the queue size just after a departure. Let
Π(s) = EsQ =

∑∞
j=0 pjs

j be the p.g.f. of Q, and note that∑∞
j=0 δjs

j is the p.g.f. of A, which we found to equal Ee−λT (1−s).

Multiply (4.7.1) by sj and sum over j, to get

Π(s) = p0Ee
−λT (1−s) +

∞∑
j=0

j+1∑
i=1

piδj−i+1s
j .

To deal with the double sum we go over to index variables i and
k where k = j− i+ 1. Their ranges of value are 1 to∞ for i and
0 to ∞ for k, so the double sum becomes

∞∑
i=1

∞∑
k=0

piδks
k+i−1 =

∞∑
i=1

pis
i−1

∞∑
k=0

δks
k
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=
Π(s)− p0

s
Ee−λT (1−s).

Thus

Π(s) = p0Ee
−λT (1−s) +

Π(s)− p0

s
Ee−λT (1−s);

∴ Π(s) =
p0(1− s)Ee−λT (1−s)

Ee−λT (1−s) − s
.

To find p0 we rewrite this as

(Ee−λT (1−s) − s)Π(s) = p0(1− s)Ee−λT (1−s)

and differentiate:

(Ee−λT (1−s) − s)Π′(s) +
(
λE(Te−λT (1−s))− 1

)
Π(s)

= −p0Ee
−λT (1−s) + p0(1− s)λE(Te−λT (1−s)). (4.7.2)

Setting s = 1 we obtain λET − 1 = −p0, so p0 = 1− λET . We
shall again let ρ = λET be the traffic intensity (this is consis-
tent with the definitions in the M/M/1 and M/D/1 queues). So
finally

p0 = 1− ρ,
and (provided ρ < 1)

Π(s) =
(1− ρ)(1− s)Ee−λT (1−s)

Ee−λT (1−s) − s
(|s| ≤ 1).

To find the expected queue length, differentiate (4.7.2) once
more:

(Ee−λT (1−s) − s)Π′′(s) + 2
(
λE(Te−λT (1−s))− 1

)
Π′(s)

+ λ2E(T 2e−λT (1−s))Π(s)

= −2p0λE(Te−λT (1−s)) + p0(1− s)λ2E(T 2e−λT (1−s)).

Setting s = 1 we obtain

2(λET − 1)EQ+ λ2E(T 2) = −2p0λET,

and so

2(1− ρ)EQ = λ2E(T 2) + 2(1− ρ)λET

= 2(1− ρ)ρ+ λ2
(
varT + (ET )2

)
= 2(1− ρ)ρ+ λ2 varT + ρ2.

Thus

EQ =
2ρ− ρ2 + λ2 varT

2(1− ρ)
.

This is known as the Pollaczek-Khinchin formula after Félix Pol-
laczek (1892–1981) and Aleksandr Yakovlevich Khinchin (1894–
1959). It gives that the expected queue length depends not just
upon the mean of the service time, but also on its variance! The
larger the variance, the longer the queue.

Example 4.7.1. Use the above result to find the mean length
in equilibrium, just after departures, of

(a) the M/M/1 queue;
(b) the M/U/1 queue, where T is Unif(0, 2/µ);
(c) the M/ Γ/1 queue, where T is Γ(n, nµ).

Solution.

(a) For the M/M/1 queue, T is exponential with parameter µ,
so that the variance of T is 1/µ2, whence

EQ =
2ρ− ρ2 + λ2/µ2

2(1− ρ)
=

2ρ− ρ2 + ρ2

2(1− ρ)
=

ρ

1− ρ
as before.
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(b) For a uniform distribution on an interval (a, b) the variance
is (b− a)2/12, so here

λ2 varT = λ2 1

12

(
2

µ

)2

=
λ2

3µ2
=
ρ2

3
.

Therefore

EQ =
2ρ− ρ2 + ρ2/3

2(1− ρ)
=
ρ− 1

3
ρ2

1− ρ
.

(c) T is Γ(n, nµ) so

λ2 varT = λ2 n

(nµ)2
=
ρ2

n
.

So

EQ =
2ρ− ρ2 + ρ2/n

2(1− ρ)
=

2ρ− n−1
n
ρ2

2(1− ρ)
.

�

4.8 Equilibrium theory
M/M/n queues are particular cases of the general birth-and-
death process, a Markov process with

P (X(t+ δt) = x+ 1|X(t) = x) = βxδt+ o(δt),

P (X(t+ δt) = x− 1|X(t) = x) = νxδt+ o(δt),

in which

βx = λ (x = 0, 1, 2, . . .),

νx =

{
xµ (x = 0, 1, 2, . . . , n− 1),
nµ (x = n, n+ 1, . . .).

We will develop a general method for finding a steady-state dis-
tribution for the general birth-and-death process.

For the general birth-death process, the Kolmogorov equa-
tions are

p′x(t) = βx−1px−1(t)− (βx + νx)px(t) + νx+1px+1(t)

(x = 0, 1, 2, . . .),

defining p−1(t) = 0. Thus at equilibrium we have

px+1 =
1

νx+1

(
(βx + νx)px − βx−1px−1

)
,

giving

p1 =
β0

ν1

p0,

p2 =
1

ν2

(
(β1 + ν1)p1 − β0p0

)
=

1

ν2

(
(β1 + ν1)

β0

ν1

p0 − β0p0

)
=
β0β1

ν1ν2

p0.

In general, we could show using induction that

px =
β0β1 · · · βx−1

ν1ν2 · · · νx
p0 = ρxp0 (x = 1, 2, . . .),

where

ρx =
β0β1 · · · βx−1

ν1ν2 · · · νx
.

Then
∞∑
x=0

ρxp0 = 1 =⇒ p0 =
1∑∞

x=0 ρx

if this sum is finite. Otherwise there is no equilibrium distribu-
tion.
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Example 4.8.1. Check the above for the M/M/1 queue.

Solution.

px =
β0β1 · · · βx−1

ν1ν2 · · · νx
p0 =

(
λ

µ

)x
p0 = ρxp0,

so
∞∑
x=0

ρx =
∞∑
x=0

ρx =
1

1− ρ
if ρ < 1,

i.e.

px = (1− ρ)ρx (x = 0, 1, 2, . . .)

as before. �

4.9 Other queues

We shall consider two types of queue.

1) Queues with discouragement

Sometimes, if a queue is sufficiently long, arrivals simply go away
(and possibly try again later) rather than join the queue. Sup-
pose that if there are already x customers in the system (waiting
or being served) a new arrival stays with probability

1

x+ 1
.

Then, for the simple queue (thus modified),

βx =
λ

x+ 1
(x = 0, 1, 2, . . .),

νx = µ (x = 1, 2, . . .).

Here

ρx =
β0β1 · · · βx−1

ν1ν2 · · · νx
=

1

x!

(
λ

µ

)x
,

and
∞∑
x=0

1

x!

(
λ

µ

)x
= eλ/µ,

which is finite no matter how large λ is compared to µ (the
discouragement factor is sufficiently strong). Thus p0 = e−λ/µ,
and

px = ρxp0 =
1

x!

(
λ

µ

)x
e−λ/µ,

which is a Poisson distribution with parameter λ/µ.

2) Finite waiting room

Sometimes there are only a finite number of spaces for arrivals to
wait. Arriving customers who find no space just go away without
joining the queue (a so-called queue with balking). Suppose that
a queue can accommodate at most c+1 customers (1 being served
and c waiting). Then, for the simple queue,

βx =

{
λ (x = 0, 1, 2, . . . , c),
0 (x = c+ 1, c+ 2, . . .),

νx = µ (x = 1, 2, . . .).

To find the equilibrium distribution, first

ρx =

(
λ

µ

)x
= ρx (x = 0, 1, . . . , c+ 1),

and ρx = 0 otherwise, since βx = 0 for x > c + 1. To find the
distribution, use

1 =
c+1∑
x=0

ρxp0 = p0
1− ρc+2

1− ρ
if ρ 6= 1,
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and so

px =
(1− ρ)ρx

1− ρc+2
(x = 0, 1, 2, . . . , c+ 1).

See exercises for the case ρ = 1.
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Chapter 5: Renewal processes

5.1 Introduction

Beginning at time zero, a sequence of lifetimes is laid end-to-end
along the positive time-axis. When a lifetime ends the next be-
gins immediately, so these time-points are called renewals. We
shall assume the lifetimes are independent and identically dis-
tributed positive random variables. They are the waiting times
between renewals. The Poisson process is an example, with life-
times having an exponential distribution. There are many ex-
amples of renewal processes that can be modelled in this way:

lifetimes of a component vital to the running of a machine
(e.g. batteries, light bulbs), which is immediately replaced
when it fails by an identical one, and the machine continues;
any process where the Poisson process is appropriate;
departures from the end of an assembly line (almost constant
waiting time);
the commencement of successive idle periods in a queue.

The theory of such processes is called renewal theory.

We shall discuss various features of this model, for example

‘the time since the last renewal’ = ‘the age of the compo-
nent’,
‘waiting time to the next renewal’ = ‘remaining lifetime of
the component’.

5.2 Discrete-time renewal processes

Renewals can occur at discrete time points 1, 2, . . . only. At
any integer time-point there is either one renewal or none. Life-
times are thus positive integers. We assume that the lifetimes
are independent and identically distributed (i.i.d.).

Example 5.2.1. The Bernoulli process. Suppose that the
probability of a renewal occurring at any time point is p, inde-
pendently of all other time points. Find the lifetime distribution.

Solution.

P (T = n) = (1− p)n−1p (n = 1, 2, . . .).

�

We shall assume that we start observing renewals at times
greater than 0, but that we know that there was a renewal at
time n = 0. We define two useful sequences:

fn = P (the first renewal since time 0 is at time n),
un = P (a renewal occurs at time n).

The values of fn are given by the distribution of the lifetime T ,
i.e. P (T = n) = fn and are thus known (f0 is defined to be 0).
Since a renewal is assumed to have occurred at 0, u0 = 1. In
general we wish to find a relationship between the fn and the
un, and thus find un (note that for the Bernoulli process un = p
if n > 0, but usually un is unknown). (un) is called the renewal
sequence.

Define the generating functions

F (s) =
∞∑
n=0

fns
n, U(s) =

∞∑
n=0

uns
n.

We assume that lifetimes are finite, i.e. P (T =∞) = 0 or equiv-
alently F (1) = 1. Note that U(s) is not the generating function
of a random variable, since the ui sum to greater than one (the
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sum will be infinite). Now

un = P (renewal at time n)

=
n∑
j=1

P (renewal at n|first renewal at j)×

× P (first renewal at j).

If there is a renewal at time j, the conditional probability that
there’s also a renewal at time n is un−j (as a new lifetime starts
at j), i.e.

un =
n∑
j=1

un−jfj

=
n∑
j=0

un−jfj as f0 = 0.

For n = 1, 2, 3, . . . , multiply this by sn, then add the equations
up:

∞∑
n=1

uns
n =

∞∑
n=1

n∑
j=0

un−jfjs
n

∴
∞∑
n=0

uns
n − u0 =

∞∑
n=0

n∑
j=0

un−jfjs
n − u0f0

∴
∞∑
n=0

uns
n − 1 =

∞∑
j=0

fjs
j

∞∑
n=j

un−js
n−j

∴ U(s)− 1 = F (s)U(s)

∴ U(s) =
1

1− F (s)
.

Example 5.2.2. Check this for the Bernoulli process.

Solution. As P (T = n) = (1− p)n−1p, we get the p.g.f.

F (s) =
ps

1− (1− p)s
.

Thus

U(s) =
1

1− ps/
(
1− (1− p)s

)
=

1− (1− p)s
1− s

= 1 +
ps

1− s
= 1 + p(s+ s2 + s3 + · · ·),

i.e. u0 = 1 and un = p for n > 0. That is,

P (renewal at time n) = p for all n ≥ 1

(which, of course, follows from the definition of the Bernoulli
process). �

Example 5.2.3. Let P (T = 1) = P (T = 2) = 1/2. Find the
renewal sequence (un) explicitly, and its behaviour as n→∞.

Solution. F (s) = 1
2
(s+ s2) and

U(s) =
1

1− 1
2
s− 1

2
s2

=
1

(1− s)(1 + 1
2
s)

=
2

3(1− s)
+

1

3(1 + 1
2
s)

=
2

3

∞∑
n=0

sn +
1

3

∞∑
n=0

(
−s

2

)n
,
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which expands to give the coefficient of sn to be

un =
2

3
+

1

3

(
−1

2

)n
(n = 0, 1, 2, . . .).

This converges to 2/3 as n→∞. �

In the above example we know that ET = F ′(1) = 3/2. The
convergence of un to 1/ET is a consequence of the following
result, which we shall not prove:

Theorem 5.2.4. Erdős-Feller-Pollard Theorem
(1949). Suppose that there is no integer k larger than 1 such
that T is restricted to the set {k, 2k, 3k, 4k, . . .} of multiples of
k. Then

un →
1

ET
(n→∞).

Finding the rth renewal

The waiting time Wr for the rth renewal is the sum of the waiting
time for the first renewal, the waiting time from the first to the
second renewal, etc., i.e.

Wr = T1 + T2 + · · ·+ Tr,

which is the sum of r i.i.d. random variables. Thus its generating
function Π(s) is given by

Π(s) =
(
F (s)

)r
.

We can use this formula to find the distribution of Wr. Further,
there is a direct relationship between Xn (the number of renewals
after time 0 up to time n) and Wr, namely

P (Xn ≥ r) = P (Wr ≤ n).

Example 5.2.5. In the last example, find the probability that
there are exactly 7 renewals in the first 12 time points.

Solution. We have

F (s) =
1

2
s+

1

2
s2

(
F (s)

)r
=

(
1

2
s+

1

2
s2

)r
= sr

(
1

2
+

1

2
s

)r
.

This is the product of two p.g.f.s: sr is the p.g.f. of the distri-
bution degenerate at r and the second term is the p.g.f. of a
Binomial random variable with parameters r and 1/2, i.e.

Wr = r + Vr where Vr ∼ Binom(r, 1/2).

So

P (Xn ≥ r) = P (Wr ≤ n) = P (r + Vr ≤ n) = P (Vr ≤ n− r).

The probability that there are exactly 7 renewals up to time 12
is

P (X12 = 7) = P (X12 ≥ 7)− P (X12 ≥ 8)

= P (V7 ≤ 5)− P (V8 ≤ 4)

= 1− P (V7 ≥ 6)−
(
1− P (V8 ≥ 5)

)
= P (V8 ≥ 5)− P (V7 ≥ 6).

As V7 ∼ Binom(7, 1/2) and V8 ∼ Binom(8, 1/2),

P (X12 = 7)

=
8∑
j=5

P (V8 = j)−
7∑
j=6

P (V7 = j)
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=
8∑
j=5

(
8

j

)(
1

2

)j (
1

2

)8−j

−
7∑
j=6

(
7

j

)(
1

2

)j (
1

2

)7−j

=
56 + 28 + 8 + 1

256
− 7 + 1

128

=
93

256
− 8

128
=

77

256
l 0·301.

�

5.3 The ordinary renewal process

We now move on to renewal processes in continuous time,(
X(t)

)
t≥0

. Here, X(t) is the number of renewals in the time

interval (0, t], i.e. not counting the renewal at time 0. Renewals
occur singly, separated by i.i.d. waiting times. Our assumption
that at time t = 0 a renewal occurred (i.e. we have a brand new
component), means that T1 has the same distribution as T2, T3,
. . . . This is the ordinary renewal process.

Note that a renewal process is not in general a Markov pro-
cess (unlike most of the processes we have previously encoun-
tered). The future of the process depends upon its history (how
much lifetime of the current component has been used up), not
just the most recent state (how many renewals there have been
up to now). The only renewal processes that are also Markov pro-
cesses are the Bernoulli process and the Poisson process, where
the waiting times are memoryless.

In the following definitions T is the lifetime, i.e. the waiting
time between renewals.

Definition 5.3.1. The survivor function for T is Q(t) =
P (T > t).

Thus if the distribution function of T is P (T ≤ t) = G(t)

then the survivor function is given by Q(t) = P (T > t) = 1 −
G(t).

Definition 5.3.2. The residual lifetime distribution at age z is
the distribution of T − z given T > z.

Let Tz be a random variable having the residual lifetime at
age z. Then, for any t ≥ 0,

P (Tz > t) = P (T > z + t|T > z)

=
P (T > z + t and T > z)

P (T > z)

=
P (T > z + t)

P (T > z)
=
Q(z + t)

Q(z)
.

In the case of exponential lifetimes, of parameter µ say,
Q(t) = e−µt and so

P (Tz > t) =
Q(z + t)

Q(z)
=
e−µ(z+t)

e−µz
= e−µt = P (T > t),

i.e. the residual lifetime at any age z has the same distribution
as the original lifetime.

More realistically, components are more likely to break down
as they age, i.e. P (Tz > t) ≤ P (T > t) for all values of z and t,
with strict inequality for some z and t. This property is referred
to as new better than used.

Example 5.3.3. Show that the Γ(2, β) lifetime distribution is
new-better-than-used.

Solution. Let T ∼ Γ(2, β), i.e. g(t) = G′(t) = β2te−βt for
t > 0. Thus

Q(t) =

∫ ∞
t

g(x) dx = (1 + βt)e−βt,
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and so

P (Tz > t) =
Q(z + t)

Q(z)

=
1 + βz + βt

1 + βz
e−βt

=
1 + βz + βt

(1 + βz)(1 + βt)
P (T > t) < P (T > t),

so that this distribution has the ‘new better than used’ property.
�

The less usual property of the component being less likely to
break down the older it gets, i.e. new worse than used, is when
P (Tz > t) ≥ P (T > t) for all z and t, with strict inequality for
some z and t.

Example 5.3.4. Show that the Pareto lifetime distribution

Q(t) =

(
1

1 + βt

)c
(t > 0),

where β > 0 and c > 0, has the ‘new worse than used’ property.

Solution.

P (Tz > t)

P (T > t)
=

(
(1 + βz)(1 + βt)

1 + β(z + t)

)c
> 1.

�

Example 5.3.5. Consider the Pareto distribution as above.

(a) Find the life expectancy of a component aged z, as a multiple
of ET .

(b) If c = 3, β = 0·1 per hour, find

(i) ET ;

(ii) the life expectancy of a component 5 hours old;
(iii) beyond what age a component which has already oper-

ated successfully for 15 hours is just as likely as not to
survive.

Solution.

(a)

ET =

∫ ∞
0

P (T > t) dt

=

∫ ∞
0

(1 + βt)−c dt

=

[
(1 + βt)−c+1

(−c+ 1)β

]∞
0

=
1

β(c− 1)

if c > 1. If 0 < c ≤ 1 then ET =∞. Assuming c > 1,

ETz =

∫ ∞
0

P (Tz > t) dt

= (1 + βz)c
∫ ∞

0

(1 + βz + βt)−c dt

= (1 + βz)c
[

(1 + βz + βt)−c+1

β(−c+ 1)

]∞
0

=
(1 + βz)c

β(c− 1)(1 + βz)c−1
=

1 + βz

β(c− 1)
,

so ETz = (1 + βz)ET .
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(b) With β = 0·1 and c = 3,

(i) ET = 1/
(
0·1(3− 1)

)
= 5 hours.

(ii) ET5 = (1 + 0·1× 5)ET = 1·5× 5 = 7·5 hours.
(iii) We need to find the median residual lifetime of a com-

ponent that has worked for 15 hours, i.e. to find t such
that P (T15 > t) = 1/2. So we need to solve

(1 + βz)c

(1 + βz + βt)c
=

1

2

∴
1 + βz

1 + βz + βt
=

(
1

2

)1/c

,

and so

1 + βz + βt = 21/c(1 + βz),

∴ βt = (1 + βz)(21/c − 1),

and

t = (β−1 + z)(21/c − 1)

= (10 + 15)(21/3 − 1) l 6·498 hours.

So the age which the component is as likely as not to
reach is 15 + 6·5 = 21·5 hours.

�

Hazard rate

We have considered an example where the chance of failure in-
creases with age, and one where it decreases. More generally, the
inequality relating Tz and T may change direction as the com-
ponent ages; e.g. the risk of failure is high when the component
is very new or very old (human body). We consider the rate at

which failure occurs. The probability that a component fails in
(t, t+ δt] given that it has survived until time t is given by

P (t < T ≤ t+ δt|T > t) =
P (t < T ≤ t+ δt)

P (T > t)

=
G(t+ δt)−G(t)

1−G(t)

=
g(t)δt

1−G(t)
+ o(δt) as δt ↓ 0.

Definition 5.3.6. The hazard rate or age-specific failure rate
is

h(t) = lim
δt↓0

P (t < T ≤ t+ δt|T > t)

δt
.

The above calculation shows that the hazard rate is given
by

h(t) =
g(t)

1−G(t)
(t > 0). (5.3.1)

Note that this is clearly not a probability density.

The definition of hazard rate leads to a useful approximation:

P (t < T ≤ t+ δt|T > t) l h(t)δt for small δt.

Example 5.3.7. Again with the Γ(2, β) distribution, let β = 0·5
per hour.

(a) Using the hazard rate, find the probability, approximately,
that after 6 hours use the component fails in the next minute.

(b) Find the exact probability using the distribution function.

Solution. For the Γ(2, β) lifetime, G(t) = 1− (1 +βt)e−βt and
so

h(t) =
β2t

1 + βt
,
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so here

h(t) =
t

4 + 2t
.

(a)

h(6) =
6

4 + 12
=

3

8
.

The probability that failure occurs in the next minute is
approximately

3

8
× 1

60
= 0·00625.

(b)

P (6 ≤ T < 6 + 1/60) =
Q(6)−Q(6 + 1/60)

Q(6)

l
4e−3 − 4·0083e−3·0083

4e−3

= 0·00623.

�

Formula (5.3.1) gives h(t) in terms of the distribution, and
we can invert it to give G(t) or Q(t) in terms of h(t):

Theorem 5.3.8. For t ≥ 0,

Q(t) = e−
∫ t
0 h(u) du.

Proof. As Q(t) = 1−G(t), (5.3.1) gives

h(t) =
−Q′(t)
Q(t)

(note that this is an alternative formula for the hazard rate).
Change the variable to u and integrate from 0 to t:∫ t

0

h(u) du = [− lnQ(u)]t0.

As Q(0) = 1, the right-hand side is − lnQ(t). The result follows.
�

Corollary 5.3.9. If the hazard rate h(t) is strictly increas-
ing the lifetime distribution is new-better-than-used. If h(t) is
strictly decreasing the lifetime distribution is new-worse-than-
used.

Proof.

P (Tz > t) =
Q(z + t)

Q(z)
=
e−

∫ z+t
0 h(u) du

e−
∫ z
0 h(u) du

= e−
∫ z+t
z h(u) du.

If h is strictly increasing then
∫ z+t
z

h(u) du >
∫ t

0
h(u) du so

P (Tz > t) = e−
∫ z+t
z h(u) du < e−

∫ t
0 h(u) du = P (T > t),

which is the new-better-than-used property. Similarly if h is
strictly decreasing. �

Example 5.3.10. For the Pareto distribution as in Exam-
ple 5.3.4, use the hazard rate to show ‘new worse than used’.

Solution.

h(t) =
−Q′(t)
Q(t)

=
cβ

(1 + βt)c+1

/
1

(1 + βt)c
=

cβ

1 + βt
.

This is a strictly decreasing function of t, so by the Corollary,
the lifetime distribution is ‘new worse than used’. �
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The number of renewals of the ordinary renewal process

In a similar way to the discrete renewal process, we consider Wr,
the waiting time until r renewals:

Wr = T1 + T2 + · · ·+ Tr,

where T1, . . . , Tr are i.i.d. with distribution function G(t). Thus
EWr = rET .

Again similarly to the discrete case, we have

P (X(t) ≥ r) = P (Wr ≤ t) = Gr(t),

where Gr(t) is the distribution function of Wr. Thus

EX(t) =
∞∑
r=0

rP (X(t) = r) =
∞∑
r=1

P (X(t) ≥ r) =
∞∑
r=1

Gr(t).

This is called the renewal function of the renewal process X.

(The middle equality in the above holds because of the fol-
lowing formula for the expectation of a general non-negative-
integer-valued random variable X:

EX =
∞∑
x=0

xP (X = x) =
∞∑
x=1

P (X ≥ x).

This can be deduced from the formula EX =
∫∞

0
P (X > x) dx

for the expectation of a general non-negative random variable,
or can be proved directly.)

We let gr(t) denote the density of Wr. Then, differentiating
the renewal function,

d

dt
EX(t) =

d

dt

∞∑
r=1

Gr(t) =
∞∑
r=1

gr(t).

This, the derivative of the renewal function, is called the renewal
density of X.

The probability of a renewal in (t, t+ δt] is

∞∑
r=1

P (t < Wr ≤ t+ δt) =
∞∑
r=1

gr(t)δt+ o(δt)

= δt
d

dt
EX(t) + o(δt).

The renewal density at time t is thus the rate at which renewals
occur at t.

Example 5.3.11. Find the renewal density for the Poisson
process.

Solution. As Wr ∼ Γ(r, λ),

d

dt
EX(t) =

∞∑
r=1

gr(t)

=
∞∑
r=1

tr−1λre−λt

(r − 1)!

= λe−λt
∞∑
r=1

(λt)r−1

(r − 1)!
= λe−λteλt = λ,

as in the definition of the Poisson process. �

The Renewal Theorem (several forms) gives the asymptotic
behaviour of the renewal function and renewal density:

lim
t→∞

EX(t)

t
=

1

ET
, lim

t→∞

d

dt
EX(t) =

1

ET
.

The second of these limits is the rate of occurrence of renewals
after the process has been running a long time. It is analogous

43



to the result for the discrete renewal process.

5.4 The equilibrium renewal process

We consider a renewal process that has been running for some
time. What is the total lifetime of the component currently
in use? The lifetime of a component selected at random from
a batch of identical components has survival function Q(t) =
1 − G(t). It may seem that this should also describe the total
lifetime of the component in use on inspection. However that’s
not the case.

Example 5.4.1. Suppose that the fuse for an electric circuit
has the following lifetime distribution, in years:

P (T = 1) =
1

4
, P (T = 4) =

3

4
.

Find the probability that when the circuit is inspected, a long-life
fuse will be found to be in use.

Solution. A fuse selected from stock will last for 1 year with
probability 1/4 or for 4 years with probability 3/4. However, if we
inspect the circuit whilst one of the fuses is in use, the probability
that a long-life fuse is observed is equal to the proportion of time
that a long-life fuse is in use, which is

3
4
× 4

3
4
× 4 + 1

4
× 1

=
12

13
.

�

In general for components with discrete probability mass
function P (T = t) = gt, if W is the lifetime of the component in
use,

P (W = w) =
wgw∑
tgt

=
wgw
ET

.

Similarly for components with a continuous distribution having
density g(t), the density fW (w) of the lifetime W of the compo-
nent in use is

fW (w) =
wg(w)∫
tg(t) dt

=
wg(w)

ET
.

Example 5.4.2. For a Poisson process, what is the density of
W , the lifetime of the component in use on the observer’s arrival?

Solution.

fW (w) =
wg(w)

ET
=
wλe−λw

1/λ
= λ2we−λw (w > 0),

i.e. W is Γ(2, λ). �

Suppose that nothing is known about the distribution of
T . As T and W have different distributions, if sampling was
based on examining the total lifetime of the element in use on
a number of occasions we would not get a good estimate of the
mean lifetime ET of a component. Our sampling of T is length-
biased.

In general

EW =

∫ ∞
0

wfW (w) dw

=

∫∞
0
w2g(w) dw

ET

=
E(T 2)

ET

=
(ET )2 + varT

ET

= ET +
varT

ET
. (5.4.1)
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Thus W always has a higher mean than T .

We now consider the residual lifetime V of the component
in use when we look at the process.

Since an observer is equally likely to arrive at any time dur-
ing a component’s lifetime, the time of an observer’s arrival is
uniform conditional upon W , i.e.

f(v|w) =

{
1

w
if 0 < v < w,

0 otherwise.

Letting f(v, w) denote the joint density of v and w, the density
fV (v) of V is given by

fV (v) =

∫ ∞
0

f(v, w) dw

=

∫ ∞
0

f(v|w)fW (w) dw

=

∫ ∞
v

1

w

wg(w)

ET
dw

=
1−G(v)

ET
.

In the previous sections, we have assumed that t = 0 is the
time of a renewal, so that the waiting times T1, T2, . . . all have
the same density function g(t). Now we assume that we know
nothing of the history of the process, but start at the observer’s
arrival (which will not generally be the time of a renewal). The
density of the residual lifetime of the component in use is

g∗(t) =

 1−G(t)

ET
=
Q(t)

ET
for t > 0,

0 for t ≤ 0,

so that T1 has density g∗(t) while T2, T3, . . . all have density g(t).
All remain mutually independent. This is called the equilibrium
renewal process.

Example 5.4.3. What is the equilibrium renewal process ob-
tained from the Poisson process?

Solution. g(t) = λe−λt, so

g∗(t) =
1−G(t)

ET
=
e−λt

1/λ
= λe−λt (t > 0),

so that the Poisson renewal process and the Poisson equilibrium
renewal process are identical (the only continuous renewal pro-
cess with this property). �

Example 5.4.4. What is the distribution of T1, the waiting
time to the first failure, for the equilibrium renewal process where

(a) T ∼ Γ(2, λ),
(b) T ∼ Unif(0, θ)?

Solution.

(a) G(t) = 1− (1 + λt)e−λt for t > 0, and ET = 2/λ, so

g∗(t) =
1−G(t)

ET
=

1

2
λ(1 + λt)e−λt (t > 0).

(b) G(t) = t/θ for 0 < t < θ, and ET = θ/2, so

g∗(t) =
1−G(t)

ET
=

2(θ − t)
θ2

(0 < t < θ),

and g∗(t) = 0 for other t.

�
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To find the expectation of T1 recall that we developed its
distribution by arguing that given W it will be Unif(0,W ) dis-
tributed. This uniform distribution has expectation W/2, i.e.

E(T1|W ) = W/2.

Then
ET1 = E

(
E(T1|W )

)
= E(W/2) = 1

2
EW.

Example 5.4.5. Find ET1 for the two distributions in the
previous example.

Solution. Recall (5.4.1):

EW = ET +
varT

ET
.

(a) For T ∼ Γ(2, λ), ET = 2/λ and varT = 2/λ2, so

ET1 =
1

2

(
2

λ
+

2/λ2

2/λ

)
=

3

2λ
.

(b) For T ∼ Unif(0, θ), ET = θ/2 and varT = θ2/12, so

ET1 =
1

2

(
θ

2
+
θ2/12

θ/2

)
=
θ

3
.

�

It is not possible to say much in general about how the distri-
butions of T1 and T compare. In the above two examples, T1 has
a lower expectation than T . However for the Pareto distribution,
for c > 2,

ET1 =
1

β(c− 2)
>

1

β(c− 1)
= ET,

where the formula for ET1 comes from the following

Exercise 5.4.6. Show that the Pareto distribution of Exam-
ple 5.3.4 has, for c > 2,

E(T 2) =
2

β2(c− 1)(c− 2)
,

and hence that

varT =
c

β2(c− 1)2(c− 2)
, ET1 =

1

β(c− 2)
.
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Chapter 6: Epidemics

6.1 Introduction
Throughout history epidemics have killed thousands of people
and played decisive roles in wars and in civilisation in general
(e.g. Bubonic plague). Today diseases such as malaria are
widespread, and every few years there is a worldwide influenza
epidemic. We shall consider some basic models of how epidemics
spread.

First some definitions. It is assumed that initially there is
at least one person with the disease. After the disease has been
communicated by an infected individual (an infective) to a sus-
ceptible one, there is a latent period during which the newly
infected individual cannot pass on the disease. This is followed
by an infectious period during which the person can transmit
the disease. (When the individual is first infected there is also
an incubation period, the time until the first symptoms of the
disease appear, which is generally a superset of the latent pe-
riod.) At the end of the infectious period, the infected person is
no longer capable of passing on the disease and removal occurs
(the person is either dead, immune to the disease or otherwise
has been put into isolation from the population). The important
mathematical features are summarised in

FIGURE

6.2 The simple epidemic
This is a specially simple model in which we assume that re-
movals do not occur and that an individual who catches the
disease does not recover or die, shows no symptoms and is not
isolated. The infected individual is thus capable of transmitting

the disease to susceptibles forever. We also assume that the la-
tent period is of zero length, so that we have only two categories
of people, susceptibles and infectives.

Let X(t) denote the number of susceptibles at time t. Sim-
ilarly let Y (t) denote the number of infectives. Let X(0) = x0

and Y (0) = y0. We shall always assume that we have a closed
community of fixed size (= n+ 1), so that

x0 + y0 = X(t) + Y (t) = n+ 1,

∴ X(t) = n+ 1− Y (t) ∀t,

so it suffices to work only with Y (t).

The model

The model is a type of birth process (Y (t) is always increasing),
so we set

P (Y (t+ δt) = y + 1|Y (t) = y) = βyδt+ o(δt).

What is the value of βy, the epidemic rate?

We assume that for any two chosen members of the popula-
tion, they come into contact according to a Poisson process with
rate α/n. This is equivalent to the rate at which each individual
comes into contact with the whole of the rest of the population
being α.

Thus when there are y infectives, and so n+ 1− y suscepti-
bles (non-infectives), the rate at which infectives and susceptibles
come into contact with each other is

y × (n+ 1− y)× α

n
=

(n+ 1− y)yα

n
.

We shall assume that when an infective meets a susceptible
the probability that the disease is passed on is β/α, where β ≤ α.
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Thus the rate of transmission from susceptibles to infectives is

βy =
(n+ 1− y)yα

n
× β

α
=

(n+ 1− y)yβ

n
.

Modelling as a birth process gives us the differential-difference
equations for py(t) = P

(
Y (t) = y

)
:

p′y0(t) = − (n+ 1− y0)y0β

n
py0(t),

p′y(t) = − (n+ 1− y)yβ

n
py(t) +

(n+ 2− y)(y − 1)β

n
py−1(t)

(y = y0 + 1, . . . , n),

p′n+1(t) = βpn(t).

It is difficult to find a general solution to such a sequence of equa-
tions. However we can proceed iteratively for a small population
(computationally for larger).

Example 6.2.1. In a household of size 5, initially 3 have an
infectious disease. Assuming that β = 2, what is the probability
distribution of the number of infected people at time t?

Solution. n = 4 and y0 = 3, so p1(t) = p2(t) = 0 for all t. And

p′3(t) = −2× 3× 2

4
p3(t) = −3p3(t).

With p3(0) = 1 this implies p3(t) = e−3t.

Next,

p′4(t) = −2p4(t) + 3p3(t),

∴
d

dt

(
p4(t)e2t

)
= 3e−3t × e2t = 3e−t,

∴ p4(t)e2t = A− 3e−t.

With p4(0) = 0 this implies A = 3, so p4(t) = 3e−2t − 3e−3t.

Finally,

p′5(t) = 6e−2t − 6e−3t, p5(0) = 0

=⇒ p5(t) = 1− 3e−2t + 2e−3t.

�

The duration of the simple epidemic

We define the duration of the epidemic to be the waiting time
until the last remaining susceptible is infected. Then

P (W ≤ t) = P (Y (t) = n+ 1) = pn+1(t).

Let Ty be the time taken for the number Y (t) of infectives
to rise from y to y+ 1, for y = y0, . . . , n. Then Ty is exponential
with parameter βy. The duration of the epidemic is the sum of
these waiting times, which are independent:

W =
n∑

y=y0

Ty.

The distribution of W is that of a sum of exponential r.v.s with
different parameters and is thus complicated, but its expectation
and variance are easier to find, using

EW =
n∑

y=y0

1

βy
, varW =

n∑
y=y0

1

β2
y

.

Example 6.2.2. Find the mean and variance of W in the pre-
vious example.
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Solution.

EW =
4∑
y=3

1

βy
=

1

3
+

1

2
=

5

6
,

varW =

(
1

3

)2

+

(
1

2

)2

=
13

36
.

�

In general

EW =
n∑

y=y0

1

βy

=
n∑

y=y0

n

βy(n+ 1− y)

=
n

(n+ 1)β

n∑
y=y0

(
1

y
+

1

n+ 1− y

)

=
n

(n+ 1)β

(
n∑

y=y0

1

y
+

n+1−y0∑
i=1

1

i

)
.

If y0 = 1 then

EW =
2n

(n+ 1)β

n∑
y=1

1

y
. (6.2.1)

Example 6.2.3. What is the value of EW when β = 1, y0 = 1
and

(a) n = 5,
(b) n = 10,
(c) n = 20,

(d) n = 200,
(e) n = 2000?

Solution ((a)–(c) only).

(a)

EW =
137

36
l 3·8056,

(b)

EW =
671

126
l 5·3254,

(c)

EW =
279 175 675

40 738 698
l 6·8528.

We’ll find the others after a little theory. �

A useful result is that, for large n,
n∑
y=1

1

y
− lnn→ γ l 0·57721 (n→∞).

γ is called Euler’s constant. So
n∑
y=1

1

y
l lnn+ γ

for large n. The error is approximately 1/(2n).

Solution continued. From the above we have the approxi-
mation

EW l
2n

(n+ 1)β
(γ + lnn),

and using this for parts (a)–(c) gives

(a) 3·6444,
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(b) 5·2360,
(c) 6·8056

(to be compared with the exact evaluations above), while for
parts (d) and (e) it gives

(d) EW l 11·6926,
(e) EW l 16·3481.

�

From (6.2.1) we find that as n→∞,

EW =
2

β

(
1− 1

n+ 1

)(
lnn+ γ + o(1)

)
=

2

β

(
lnn+ γ + o(1)

)
since

lnn

n+ 1
→ 0 as n→∞.

The epidemic duration is thus approximately 2/β times lnn.

6.3 The general epidemic

The general epidemic model is the same as the simple epidemic,
except that we introduce ‘removals’ into the population. Indi-
viduals thus follow the path

Susceptible → Infective → Removed

or alternatively stay as susceptible if the disease runs its course
before they become infected. This may occur if infectives be-
come removed sufficiently quickly so that the infective category
becomes empty before we run out of susceptibles.

We shall consider two questions:

What is the probability that not everyone gets the disease?
What is the expected number of people to get the disease?

Define X(t), Y (t) and Z(t) as the number of susceptibles,
infectives and removeds respectively at time t. Let X(0) = x0,
Y (0) = y0 ≥ 1, Z(0) = z0 = 0.

Example 6.3.1. Plague breaks out in a small hamlet, where
there are 100 individuals. After a week 25 people have caught
the disease, of which two have already died. After four weeks
all trace of the disease has disappeared, leaving 65 people dead.
Of the others 8 caught the disease, but recovered (it is assumed
that they are now immune) and the remaining 27 never caught
the disease. Express this information in terms of X(t), Y (t) and
Z(t).

Solution. This says that with time measured in weeks,

X(1) = 100− 25 = 75, Y (1) = 25− 2 = 23, Z(1) = 2,

and

X(4) = 27, Y (4) = 0, Z(4) = 65 + 8 = 73.

�

The model

We know that X(t) + Y (t) + Z(t) = n + 1, so we need consider
only the bivariate process

(
X(t), Y (t)

)
.

Values of X(t) and Y (t) may change in two ways:

An infective meets a susceptible and passes the disease on.
If there are x susceptibles and y infectives the transition is
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(x, y)→ (x− 1, y + 1), and this occurs at rate

βxy

n

as before.
An infective is removed. We suppose that an individual who
becomes infected remains an infective for a length of time
exponentially distributed with parameter γ. Thus (x, y) →
(x, y − 1), and this occurs at rate yγ.

Expressed in the usual way,

P (X(t+ δt) = x− 1, Y (t+ δt) = y + 1|X(t) = x, Y (t) = y)

=
βxy

n
δt+ o(δt),

P (X(t+ δt) = x, Y (t+ δt) = y − 1|X(t) = x, Y (t) = y)

= γyδt+ o(δt).

This process occurs on a triangular lattice

{(x, y) : 0 ≤ x+ y ≤ n+ 1}.

The distribution of the process, i.e. the joint distribution of X(t)
and Y (t), is complicated and we shall not consider it. We will
consider the path of the population on the lattice as a two-
dimensional (discrete-time) Markov chain.

Starting at (x, y) we either go to (x− 1, y + 1) or (x, y − 1)
if y > 0 (if y = 0 we are at the final position). Using simi-
lar reasoning to that for breaking down a Poisson process, the
probability that we move to (x− 1, y + 1) is

βxy
n

βxy
n

+ γy
=

βx

βx+ nγ

=
x

ρ+ x

where we set

ρ =
nγ

β
.

Thus the Markov chain has probabilities of transitions

P
(
(x, y)→ (x− 1, y + 1)

)
=

x

ρ+ x
,

P
(
(x, y)→ (x, y − 1)

)
=

ρ

ρ+ x
.

Example 6.3.2. Suppose that the population size is 4. Further
suppose that γ = 1·2 and β = 1·8. After the end of the epidemic,
y = 0. What is the probability distribution of the final value of
x (= X(∞)), if we start with 3 susceptibles and 1 infective?

Solution. n = 3. The starting state is (x, y) = (3, 1) and we
have ρ = 3 × 1·2/1·8 = 2. The probabilities of the paths by
which the epidemic runs its course are as follows:

FIGURE

The distribution of the final value of x is thus

P
(
X(∞) = 3

)
= P

(
(3, 1)→ (3, 0)

)
=

2

5
= 0·4,

P
(
X(∞) = 2

)
= P

(
(3, 1)→ (2, 2)→ (2, 1)→ (2, 0)

)
=

3

5
× 2

4
× 2

4
=

3

20
= 0·15,

P
(
X(∞) = 1

)
= P

(
(3, 1)→ (2, 2)→ (1, 3)→ (1, 2)→ (1, 1)→ (1, 0)

)
+ P

(
(3, 1)→ (2, 2)→ (2, 1)→ (1, 2)→ (1, 1)→ (1, 0)

)
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=
3

5
× 2

4
× 2

3
× 2

3
× 2

3
+

3

5
× 2

4
× 2

4
× 2

3
× 2

3

=
4

45
+

3

45
=

7

45
l 0·156,

P
(
X(∞) = 0

)
= 1− 2

5
− 3

20
− 7

45
=

53

180
l 0·294.

�

Example 6.3.3. In the previous Example, what is the proba-
bility that not everyone gets the disease? What is the expected
number who contract the disease?

Solution. The probability that not everyone gets the disease
is

1− P
(
X(∞) = 0

)
= 1− 53

180
=

127

180
l 0·706.

Also

EX(∞) = 3× 2

5
+ 2× 3

20
+ 1× 7

45
=

149

90
,

so the expected number of people who contract the disease (not
including the original infected individual) is

3− 149

90
=

121

90
l 1·344.

�

The distribution of X(∞) is called the survivor distribution.
Its shape in the present case is as follows:

FIGURE

6.4 The threshold

Notice that the probability distribution of the number of those

who do not catch the disease in our example is ‘U-shaped’ (the
values at the extremes are larger than those in the middle).

For a large population a U-shaped distribution implies that
either very few or very many people will catch the disease. The
following charts show the survivor distributions for n = 20, x0 =
20, y0 = 1, for values for ρ of 5, 10, 20 and 40.

FIGURE

The distributions for ρ = 5 and ρ = 10 are U-shaped, the
others are not (there is likely to be only a small outbreak for
these last two cases). In general it has been found that U-shaped
survivor distributions occur when x0 > ρ. That is, there is a
threshold phenomenon.

Why does this occur? We consider an approximation. Sup-
pose y0 is small compared to x0. In the early stages of an epi-
demic, the rate of change of the number of infectives is as follows.

y → y + 1 : rate
βyx

n
l
βyx0

n
,

y → y − 1 : rate γy.

This is equivalent to a simple birth-death process with birth rate
βx0/n and death rate γ. For this birth-death process, if the birth
rate is less than the death rate, i.e.

βx0

n
≤ γ ⇐⇒ x0 ≤ ρ

then the population is bound to become extinct. If the birth rate
is greater than the death rate, there is probability(

γ

βx0/n

)y0
=

(
ρ

x0

)y0
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that the population becomes extinct, and otherwise the popula-
tion tends to infinity.

Back to the epidemic: the ‘population’ is the population of
infectives. Thus if x0 ≤ ρ there will probably be only a small
outbreak, whereas if x0 > ρ there is approximate probability(

ρ

x0

)y0
of a small outbreak, and approximate probability

1−
(
ρ

x0

)y0
of a large outbreak, with little chance of a medium-sized out-
break.

Note that in general, infection spreads at its fastest when
about half the population are infected, so the disease is unlikely
to die out at that point.

Example 6.4.1. Consider the following examples of a general
epidemic model:

(a) x0 = 20, y0 = 2, z0 = 0, β = 4·2, γ = 1;
(b) x0 = 222, y0 = 4, z0 = 0, β = 1, γ = 1.

What is the probability, approximately, of a major outbreak
in each case?

Solution.

(a) 22 = x0 + y0 = n+ 1 so n = 21. Then

ρ =
nγ

β
=

21× 1

4·2
= 5 < x0.

Thus

P (major outbreak) l 1−
(
ρ

x0

)y0
= 1−

(
5

20

)2

=
15

16
.

(b) 226 = x0 + y0 = n+ 1 so n = 225. Then

ρ =
nγ

β
=

225× 1

1
= 225 > x0.

Thus
P (major outbreak) l 0.

�
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