Renewal Processes

- **4.1** Gary plays his aunt at draughts. For each game, the probability that Gary wins is p; the probability that his aunt wins, or the game is drawn, is thus 1 p. Games are mutually independent. A renewal occurs if Gary wins two games running, and if a renewal did not occur on the first of these two games.
 - (a) Following the usual notation, write down the probabilities u_0 , u_1 , u_2 and f_1 , f_2 , f_3 , f_4 .
 - (b) Show that $u_n = (u_{n-2} + 1 p)p^2$ for $n \ge 3$, and hence find the generating function $U(s) = \sum_{n=0}^{\infty} u_n s^n$.
 - (c) Find the probability generating function $F(s) = \sum_{n=1}^{\infty} f_n s^n$. By differentiating this function show that the expectation of the number of games from one renewal to the next is $(1+p)/p^2$.
 - (d) After a long sequence of games, Gary's mother arrives to find a game in progress. What is the probability that it will end in a renewal?
- **4.2** Suppose that the lifetime T of a component has distribution given by $P(T=1) = P(T=2) = P(T=3) = \frac{1}{3}$.
 - (a) Find the p.g.f. F(s) of T, and thus the p.g.f. of W_r , the waiting time to the r^{th} failure.
 - (b) What is the probability that the 3rd failure occurs at or after time 7?
 - (c) Find the probability that the 4th failure occurs at time 6.
- **4.3** It is decided to model the lifetime of a spring using a uniform distribution on (0,1), time being measured in years.
 - (a) What is the distribution of the future lifetime, T_z , of a spring that has survived for a time z?
 - (b) Write down the mean and standard deviation of T_z .
 - (c) Prove that the spring is 'new better than used'.
 - (d) Find the hazard rate h(t) corresponding to the lifetime distribution.
- **4.4** Consider a renewal process that has been running a long time, with lifetimes having the distribution Unif(4, 16).
 - (a) Show that the mean lifetime of the component in use is 11·2, and deduce the mean time to the next renewal.
 - (b) Find the density of the time to the next renewal, and verify that its mean agrees with the value obtained in (a).
- **4.5** A renewal process has lifetimes with density

$$g(t) = \frac{2}{t^3}$$
 $(t > 1).$

We join the process after it has been running for some time. Find the following.

- (a) The distribution of W, the lifetime of the component currently in operation.
- (b) The distribution of the residual lifetime of the component in operation.
- (c) The approximate expected number of renewals by time t=20.