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Summary

The effects of an electric field on the travelling waves arising in Belousov—-Zhabotinsky systems
are analysed using the Oregonator to describe the kinetics. The model is reduced to a two-
variable version involving the concentrations of HBr@nd Mg;{, the oxidized form of the
catalyst, using previously-suggested scalings. The travelling wave equations for this two-
variable model are solved numerically for a range of kinetic parameters and the ratio of diffusion
coefficientsD. An upper bound on the field strengkhis found, arising from a saddle-node
bifurcation, for the existence of travelling waves. There can also be a lower bouhéooitheir
existence, dependent on the other parameters in the system. The conditions for this termination
of a solution at a finite field strength are determined. In other cases, travelling waves exist for
all negative field strengths and an asymptotic solution for IfEjés constructed. This acts as a
confirmation of the numerical results and provides further insights into the structure of the wave
profiles. Numerical integrations of the corresponding initial-value problem are undertaken.
These show wave deceleration and annihilation in positive fields and wave acceleration in
negative fields, in line with experimental observations. In cases when there is termination at
afinite value of E, wawe trains are seen to develop for (negative) field strength less than this
value.

1. Introduction

Propagating pulses of reaction are usually well-ordered structures and, as such, play an important
role in many chemical and biological processes. They often arise in excitable media, whereby
the system undergoes a rapid reaction, the ‘excitory region’, followed by a slow recovery to its
original state. During this latter process the system is refractory, insensitive to further stimuli and
needs to have returned sufficiently close to its rest state before further waves can be generated. As
a consequence, excitable media subject to external stimuli usually form either individual waves
or regular trains of equally spaced waves. The excitable media studied in most detail, both
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experimentally and theoretically, are, perhaps, systems based on the Belousov—Zhabotinsky (BZ)
reaction. This system is often used as a paradigm for the more complex excitable media that arise in
biological applications. This reaction exhibits all the features particular to excitable media, single
reaction pulses and wave trains in 1D and, in 2D, target patterns and spirals (forming under suitable
conditions).

When an electric field is applied to a BZ system the resulting behaviour can become much more
complex. In 1D wave acceleration and deceleration as well as wave annihilation are ob%eoved (

3), though, perhaps the most unexpected behaviour seen in 1D is wave splitting. In this a sequence
of waves become detached from the rear of the original wave and travel in a direction opposite to
that of the original wave. In 2D an initially symmetric, radially spreading wave can be broken when
an electric field of sufficient strength is applied, with spirals forming at the broken drtds).

There is also the possibility of more waves forming at these broken ends (perhaps the analogue
of wave splitting seen in 1D). As the reaction proceeds under the influence of the electric field,
further wave breakings and recombinations can arise, depending on the electric field strength and
the specific chemical composition of the reactant mixture. Applying direct or alternating electric
fields to BZ systems has also been observet (12) to cause complex motion of spiral centres in

2D configurations.

Models for BZ systems are usually based on Oregonator kinelt®;94), which involves the
three active species, an autocatalyst HBré inhibitor Br— and an oxidised form of the catalyst
M3} (usually ferriin). Expressing this mechanism in dimensionless fdrtq 17) shows that,
to a good approximation, the concentration of Bran be regarded as varying quasi-statically in
relation to the concentrations of the other two active species. In this reduced, two-variable form,
the reaction dynamics are relatively simple. There is only one (chemically acceptable) steady state,
with parameter values for which this is an excitable state. There is also the possibility of oscillatory
behaviour arising from Hopf bifurcations. This two-variable reaction mechanism has been used
extensively as the kinetics in models of spatially-distributed systems, both as a generic model for
excitable media and, more directly, to describe specific effects seen in BZ systems (effects of electric
fields and differential illumination on a light sensitive version of the BZ reaction are two such
examples). The consequences of making the reduction from the three-variable to the two-variable
system on the travelling waves are examined briefly in the field-free case, where perhaps larger than
expected differences between the two waveforms are seen.

More detailed kinetics have been suggested for modelling the BZ reaction, a review and a detailed
examination of some of these different mechanisms is giverfjn These mechanisms involve
further active species and further kinetic steps and are thought to provide a better description for BZ
chemistry. The reaction dynamics of these extended schemes can be much more complex than for
the two-variable Oregonator, multistability and further bifurcations can arise. This makes models
based on these extended schemes as the kinetics in spatially-distributed systems more difficult to
analyse, as the nature of their ‘base state’ is not readily determined. This can, in turn, make it
difficult to unravel the mechanisms that lead to structures that are essentially spatially-distributed.

Thus there are advantages to using two-variable Oregonator kinetics in trying to understand how
propagating waves and other spatio-temporal structures arise, both as a model for a general excitable
system and for specific BZ systems. This is the purpose of our paper. In particular, we develop a
spatially-distributed model for a BZ system which includes the effects of applying electric fields to
the reactants and which uses the Oregonator model for the kinetics. We make our basic reaction—
diffusion electromigration model dimensionless using the standard scalings used previéusly (

17). We show, to be consistent with previous studies, that 8nould still be regarded as in a
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quasi-steady state. This reduces our model to one for the two variablesHBAMVES, and we
examine this reduced model in detail. Our main aim is to determine the range of behaviour that our
model can predict that is also observed experimentally and to see if there are any features seen in
the experiments which are not also supported by our model. This will allow an assessment to be
made of the viability of using two-variable Oregonator kinetics for modelling electric field effects

on BZ systems. This kinetic model (in its reduced form) has proved effective in explaining the
nature of flow-driven structures in BZ systems (s&tp 20), for example) and in wave and spiral
modifications in light sensitive mediadX to 23) provide examples).

Previous studies have highlighted the subtle nature of the interaction of an applied electric field
with reacting and diffusing ionic chemical species. The initial work by Schmidt and Ortoleva
(2410 26) and Ortoleva Z7) showed that electric fields can have a considerable influence on
wave propagation and pattern formation in chemical systems. Later studies of reaction fronts in
autocatalytic system&8 to 30) have shown a much greater range of complex behaviour than might
have been expected in these simple systems. Much of this was seen in a detailed examination, both
experimentally and theoretically, of reaction fronts in the iodate—arsenous acid system subjected to
applied electrc fields3(, 32). Models based on two-variable Oregonator kinetics for the effects of
electric fields on BZ systems have been studied previously. However, these tend to be inconsistent
with the ionic charges of the reactants, usually assuming that there is electromigration of HBrO
caused by the electric field1Z, 33) for example. Although these models can be regarded as good
generic models for convective (electromigratory) effects on excitable media, they have drawbacks
when applied specifically to interpreting the behaviour of a BZ system.

2. Modd

Oregonator kinetics for the BZ reaction can be conveniently expressed as

A+Y — X+ P rateksay,
X+4+Y — 2P ratekoxy,
A+ X — 2X+4+2Z rateksax, 1)
2X — A+ P rateksx?,
1
B+Z— > fY ratekcbz

whereX = [HBrO;], Y = [Br-]andZ = [ngﬂ are the active species. We treat= [BrO; ]

andB (representing all oxidised organic species) as pooled chemicals, that is, they are assumed to
remain at their initial concentrations throughout. Rsepresents reaction products it does not enter

our discussion. The dependence of the reaction rates ©hifH(1) has been omitted as we are
assuming that the system is run at constaHt (which is usually the case in experiments).

To derive the reaction—diffusion electromigration equations governing our system, we make the
constant field approximation. This is valid provided that the other, non—reacting ionic species are in
plentiful supply compared to the reacting ionic species &nd ME,”;L (34). We take planar geometry
usingx andt as our space and time variables. This leads to the equations, on using (1),

aX 92X
at

= = DxF + k3AY — ko XY + ks AX — 2kg X2, (2)
X



470 I. KISSetal.

P17 )

—> X
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whereDy, Dy and D7 are the diffusion coefficients of reactaiXs Y~ and Z3* respectively and
£ is a measure of the (constant) applied electric field strength. The additional migratory effect of
applying the electric field§ > 0) on the ionic specie¥~ andZ3* is shown in Fig. 1.

We make (2) to (4) dimensionless using the scalings suggested originally by Tistm17),
namely

_ ks A _ ks A _ (k5A)2 - o kB 12
x_<aa>m Y_<?;>u Z_<M&B>m f= (B, x—x(5;> . (5)

Applying (5) in (2) to (4) and dropping the bars on the dimensionless time and space varjables
for convenience, we obtain the dimensionless system

du d%u 1
= 4+ Z(@u(l-u - , 6
TR + p U@ —u)—uv+quv) (6)
ow_ Pw o dw tu @)
- = - — PR —w
ot Wiae T WS :
(2, tp e g @+ u) 8)
€|l——-Dv— — = — | =fw- v,
ot V3x2 3V " ox q
where
2kaka k:B 2kckaB
q= — = 9)

~ koks E_ks—A’ €= koks A

are the usual kinetic parameters and where

bz By Ox )1/2 (10)

Dw=—2, Dy=—, E=3(—2
W=bx V7 Dx <&B

We note that the choice of dimensionless variables (5), which preserves the essential form of the
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original dimensionless version of the Oregonator model, forces the pararhédemultiply both
the diffusion and electromigration terms in equation (8) for BFhe reduced model is then derived
on the assumption that « 1, itis usually at least an order of magnitude less thaFhen formally
lettinge’ — 0 in equation (8) shows thatis in the quasi-steady state

fw
= . 11
"TlU+q 1)
On using (11) in (6), (7) we obtain our reduced model as

au  3%u 1 fw(u —q)>
—=—+-|(ul-uy - —— 12
it 9x? e<( ) (u+a) (12)

Jw 3%w Jw

— =D— -DE— — 13
at X2 ax T4 (13)

for u andw which are dimensionless versions of [HBi@nd [M3}] respectively and where we
have replaced by D.

Note that, in this reduction, the electric field appears only in the equation @][Nhe only
ionic species in this version. It is the model given by (12), (13) that we now consider in detail.
Before doing so we give a brief description of the spatially uniform system.

2.1 Spatially uniform system

This system is given by the ordinary differential equations that are obtained from (12), (13) with the
spatial derivatives omitted. This has the single steady state

us:ws=%<l—(f+q)+\/(l—f—q)2+4q(1+f)>. (14)
The (linear) stability of this steady state is determined by putting
U=us+U, w=ws+W, whereU, W « 1. (15)
This results in the linear equations
U:;—L(aU—ﬁW), W=U-Ww, (16)
where
a:l_zus_%, -2 (17)

Note that8 > 0andg — «a > 0.

Equations (16) show that the steady state (14) is stabte:, with there being a Hopf bifurcation
whena = €. The situation is illustrated in Fig. 2 with plots afagainstf for representative values
of q. The Hopf bifurcations occur when the line= ¢ intersects the appropriate curve. It can do so
at two values off , f1 and f; say, for a given value af. The system is oscillatory fof in the range
fi < f < fp andis an excitable system fdr > f,. The nature of the Hopf bifurcation is easily
determined by BIFOR235). Our calculations for a range of valuesgthow that this bifurcation
is subcritical at the smaller value df and supercritical for the larger value. For example, for
g = 0-002 the Hopf bifurcation is degeneratecat= ¢* = 0.-8006 f = f* = 0.9760, changing
from subcritical forf < f* to supercritical forf > f*.
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Fig. 2 (a) Plots ofw, asdefined in (17), against for g = 0-02, 0-002 0-0002. The spatially uniform system
is stable forx < €. (b) A sketch ofx againstf to show the change from unstable (oscillatory) to stable
(excitable) behaviour at = f» whena = ¢

3. Spatially distributed system
3.1 Travelling waves

We start by considering the travelling waves (single pulses) that can arise in our model (12), (13).
To derive the travelling wave equations we introduce the travelling coordinatex — ct, where
c is the (constant) wave speed and takandw to depend only ory. This leads to the ordinary
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differential equations

y , 1 fwu—-0q) _
u’ +cu +g(u(1—u)—w>_o, (18)
Dw’+(c—DE)w' +u—w=0 (19)

on—oo < Yy < oo (where primes denote differentiation with respecy}oThe boundary conditions
are

Uu—us, w— ws asl|yl — oo, (20)

whereus andws are given by (14).

We were able to solve (18) to (20) numerically using the method describe@7)n (These
numerical solutions calculate the wave speéar given values of the parameters and are continued
in one of the parameters using a pseudoarclength method. In Fig. 3a we give ploagaihst
the electric field strengtle for f = 2.5andD = 1.0, g = 0-002 and for a range of values of
(noted on the figure). All the curves have a similar characteristic in that they show a saddle-node
bifurcation atE = Ep,, with two solution branches foE < Ep,. For the smaller values af there
is a local minimum forc on the lower solution branch. Both solution branches are unbounded for
negative values oE (at least as far as we have been able to compute) and on the upper solution
branchc appears to be tending to a constant value (dependent anE — —oo. Forthe larger
values ofe, Ey, < 0 with the case whel,, = 0 being determined fron3f) ate = ¢p = 0-076.
For values ofe > ¢g there are no travelling waves in positive fields for this valud of

We are able to compute the limiting field strendih, using the method developed i87) and a
graph ofEn, againste is shown in Fig. 3b (for the same parameter values as before). The change
in sign of E;, ateg is clearly seen in the figure withy, increasing monotonically asis decreased.
For larger values ot travelling waves are possible only in strong negative fields, for example, at
€ = 05, En = —5-:3991. This figure also shows that, when the system is in its more excitable
state—small values af—small changes in the electric field strength can radically affect whether
waves propagate or fail in positive fields.

The effect of the electric field is to alter the wave profile. This is illustrated in Fig. 4 with plots
of u andw profiles for a range of values &, with f = 2.35 ¢ = 0.05, g = 0.002 D = 1.0.
The effect of a positive electric field is to decrease both the height and lateral spread of hoth the
andw profiles; compare the profiles f& = 0.9 with those forE = 0. A negative field has the
opposite effect. The lateral spread of both thandw profiles and the maximum of the profile
are increased as the value|&f is increased. The effect on the maximum valuevah the wave is
for it to be first increased in the smaller negative fields and then to decrease as the field strength is
increased; compare the profiles forE = —1.0andE = —20.0 in Fig. 4b.

We next consider the effect of the stoichiometry facfoion the solution. We take = 0.05
(g = 0-002 D = 1.0) and plot curves of againstE for a range of values of in Fig. 5a. There
is again a maximum valuk,, of E for the existence of a travelling wave solution with a saddle-
node bifurcation aE = Ep,. The value ofEy, decreases as is increased and fof greater than
about 32 we find thatE, < 0, as might be expected from Fig. 3a. For the larger valuefs (e
curves forf > 2.5) both solution branches continue to lar@g for negative fields, with the upper
branch solutions appearing to tend to a constant value as —oco. Howewer, for smaller values
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Fig. 3 (a) Plots of the wave speedf the travelling waves against the electric field strerigtfor f = 2.5
and a range of values ef (b) The electric field strengtkm at the saddle-node bifurcation plotted against
for f = 2.5. The values of the other parametersaete 0-002 andD = 1.0
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of f (the curves forf = 2.3, 2.25) the solution terminates at a finite valuetf The reason for

this is explained in%7) and concerns the nature of the eigenvalues the linear equations which
approximate the travelling wave equations (18), (19)yas—> oo. Considering these equations as

a four-dimensional first-order ordinary differential equation and linearizing about the steady state
(us, 0, ws, 0) gives the characteristic polynomial for the Jacobian as

(B —a)

€

=0.
(21)

DA%+(c(1+ D) — DE)A3+<C(C— DE)+% — 1) A2+<%(c— DE) — c) A+

A travelling wave (pulse) is a solution of equations (18), (19)(inu’, w, w’) phase space
corresponding to a homoclinic orbit on the steady state0, ws, 0). A necessary condition for

the existence of a homoclinic orbit is that there must be both a stable and an unstable manifold on
the steady state. Hence a sufficient condition for the non-existence of a travelling wave is that all
the roots of equation (21) have either positive or negative real parts.

For necative fields and for all the cases we computed for positive figétds,DE) > 0and so the
coefficient ofa2 in equation (21) is positive. This means that there must be at least one negative real
root or two complex conjugate roots with a negative real part. Thus travelling waves (single pulses)
fail to exist when equation (21) does not have any roots with a positive real part. Conditions for
this to happen can be derived from the Routh—Hurwitz criterion @&e\ppendix 2) for example),
which gives a relation betweenand E (for given values of the other parameters). These curves
are plotted in Fig. 5b for a range df, together with the wave speed curves for= 2.3 and
2.25. This figure shows that, even though the wave speed curves are close together, they end at
noticeably different values d, a respectivel\E = —3.631 andE = —0-616 for the upper branch
solutions. This behaviour continues as we decreggbe wave speed curves change only slightly
whereas the ‘non-existence’ curves have a much greater variation. We find that there is a value
of f at which the ‘non-existence’ curve intersects the wave speed curve at the saddle-node point,
occurring atf = 2-115 for Fig. 5b. For values of less than this there are only the lower branch
solutions. There is then a value fdr, just below f = 1.9 in Hg. 5b, where the ‘non-existence’
curve lies wholly to the right of any possible wave speed curves and there no travelling waves (as
single pulses) for any value &:.

We can gain further information about this wave termination process by considering the solution
of equation (21) for negative fields 88| — oo, assuming that remains ofO(1) (and positive)
in this limit. A standard perturbation approach shows that there are two solutidd&lpfone of
O(|E|) and one ofO(|E|~1). The O(1) solutions are, to leading order, given by

A2+ ch+aje=0. (22)

If « > 0, then both roots of (22) are negative or have negative real part ands id, they are real
and of opposite sign. The other solutions are

C —
Y ] T S T I T
D o
Whena = 0, this latter root becomes
A ’3|E|—1/2+---.

€C
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(b)
8

Fig. 5 (a) Plots of the wave speebf the travelling waves against the electric field strerigtfor ¢ = 0-05
and a range of values df. (b) ‘Non-existence’ curves obtained from equation (21) for a rangk afid wave
speed curves fof = 2.25, 2-3, to show the termination of a solution at a finite valudeofFor these values
of f the kinetic system is unstableont.
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Expressions (23) show that there is always at least one negative rg&|farge, and with (22)
that, if o > 0, all roots have negative real parts. Thus a necessary condition for the existence of
atravelling wave in thdE| — oo limit is thate < 0. This, in turn, provides an upper bound (at
a = 0) on f for the termination of wave solutions at a finite valuetaf Forq = 0-002,« = 0 at
f = 2.39425 (note that the Hopf bifurcation occursfat= 2.3087 fore = 0-05). This value for
f provides a limiting case for the ‘non-existence’ curves shown in Fig. 5b. To show the transition
ate = 0 from having wave solutions terminating at a finite (negati#efo having waves for all
negative fields, we plot the ‘non-existence’ curves foe 2.39 (@ > 0) and forf = 2.40 (@ < 0)
in Fig. 5¢c. Forf = 2.40 the curve gives (large) positive values forand, as we have seen, the
solutions finish at a saddle-node bifurcation well before these field strengths are reached.

We explored this point a little further by considering values fofor which the kinetic system
is stable, that isy < €. (Note that, for the values of in Fig. 5b, the kinetic system is unstable,
a > ¢€.) We show a wave speed plot and a ‘non-existence’ curve obtained from the Routh—Hurwitz
criteria for f = 2.35 in Fig. 5d. The upper branch solution terminates on the ‘non-existence’
curve atE = —13.778. As a further check we computed the eigenvalué®m equation (21) as
the travelling wave solution progressed along the upper branch and found that, where the positive
eigenvalue was lost was the point of intersection of the two curves in the figure. We were unable to
continue the lower branch solution to the ‘non-existence’ curve. On this branch the solution became
oscillatory (with complex values for) and we found that eventually we were unable to satisfy the
boundary conditions. This occurrediat= —16-36 in Fig. 5d.

In Fig. 5a we identified a saddle-node bifurcatioreat= Er,, and, as mentioned above, we can
calculate this value in terms df. The results are shown in Fig. 6 (fer= 0.05, ¢ = 0-002 D =
1.0). The curve starts at = 2.115 (whereE, = 1.235) and decreases monotonically fags
increased, giving negative values 6y, for f > 3.213, in line with Fig. 5a.

Our previous studyd37) suggests that changing the paramgtdoes not make significant changes
in the travelling wave solutions, provided it remains small. Howekrthe ratio of diffusion
coefficients, can play a more important role. From values gived)in§ ~ 0-3 and to illustrate
this point we computed the wave speed plotsfoe= 0-3 and a range of values df (with q =
0002 ¢ = 0.05). These are shown in Fig. 7a. The curves have a similar form to those shown
in Fig. 5a,b, though the values &, are considerably greater, for example with= 2.5, E,, =
0-7851 forD = 1.0 compared tdE, = 8:1420 forD = 0-3. The conditions for the change from
having the curves continue to largg| and finishing at a finite value dE is independent oD;
see (22), (23). However, the change in the valu& @t which this occurs is greater f@ = 0.3;
compare the curves fof = 2.3 and f = 2.25 in Fig. 7a with those in Fig. 5b. One feature to
note about these curves is that, for the smaller valuef, stable (upper branch) travelling wave
solutions exist (as single pulses) only in positive fields. The curvé fer2-25 in Fig. 7a terminates
at E = 1.6383 on the ‘non-existence’ curve RH.

In Fig. 7b we plotEn, the value ofE at the saddle-node bifurcation, agaimstfor f = 2.5
(andq = 0-002 ¢ = 0-05). The figure shows th&i,, decreases monotonically with, becoming
negative aD ~ 1.39 and changing only slightly d3 is increased further. For smaller valuesf
Em increases rapidly ab is decreased. This can be expected from equation (18) emltiplies
the electric field strengtk and, in the limit asdD — 0, the situation without an electric field and
M3+ immobile is approached.

In Figs 3a and 5a we saw that the wave speagpeared to be approaching a constant value for
large negative fields. We now consider this further by looking at the solution of equations (18), (19)
for E < 0 inthe limit as|E| — oo.
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Fig. 6 The electric field strengtkn at the saddle-node bifurcation plotted agaihgor e = 0-05
(g =0002 D =1.0)

3.1.1 Large, negative fields, E> —oco. We start our solution at the front of the wave (region 1)
where we leave the variables unscaled and look for a solution by expanding

u(y, [E]) = ug(y) + utWIEI™ +---,  w(y, |ED = wo(y) + wi(WIE[™  + -,
CE) =co+C|EIT 4o, (24)

The leading-order problem gives, = 0, hence from (20)wo = us, and then

fus(up — )
(Up+q)

A consideration of equation (25) shows that

1
u6+cou6+g<uo(1—uo)— ):0, Uu— Us asy — oo. (25)

Uo(y) — Ug asy — —oo, (26)

whereu, is given by

ug—(l—q—us)ua—k fq=0, thatis,uaz%(1—q—us+\/(1—q—us)2—4fq).
(27)

We note thatuy > ug at least for the small values gfrequired by the model.
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Fig. 7 (a) Plots of the wave spe&df the travelling waves against the electric field strengtfor a range of
values of f for D = 0-3. (b) The electric field strength, at the saddle-node bifurcation plotted agaiDst
for f = 2.5. The values of the other parametersaee 0-002 ande = 0-05
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To obtain some idea of the values of the various constants that will arise in our discussion it is
instructive to evaluate them for smgl(note that we takg = 0-002 in our numerical solutions and
that smaller values df, for example,g = 0-0008, have also been suggested as reasonable values

f+1
for this parameter). Fron87) us ~ Ef + 1;q (for f > 1, which is the only case we consider here)
and, from (27),
f(f+1
~l—— 2
Ua GFopdt (28)

It is the problem given by (25) to (27) that determirgs We can scalec out of this problem
by writing § = e 12y, ¢cg = ¢ Y2&. This reduces the equation to the one that arises in the
solution fore small, as discussed ir8]) where plots ofty (in the present context) again§tfor
q = 0-002 0-0008 are given. Fay = 0-002 andf = 2.5, & = 1.5651, givingcy = 1.565% /2,
consistent with the values for largg| seen in Fig. 3a. In order to obtain a unique valuedgr
the equilibrium pointgug, 0) and (us, 0) in the (u, u") phase plane of equation (25) must both be
saddle points (giving a saddle—saddle connection). This is the case provided<hatas defined
by (17), which is precisely the necessary condition derived above for the existence of a travelling
wave solution in the largeE| limit.

At O(IE| D), wy satisfiesDw] = —(Up — Us) from which it follows thatw; ~ —(ua — us)y/D
asy — —oo. This suggests that the expansion breaks down wtisiof O(|E|) and leads to region
I, where we puty = |E|~1y and still leaveu andw unscaled. The leading-order problem for this
region is given by

fw(u—aq) ,
ul—u— ——=0, Dw +u—w=0 29
u+ao (9)
subject to
u~ug+---, wwus—(ua5u3>7+--- asy— 0~ (30)

on matching with region I. From (29) we obtain

du _ u(u —Uus)(U+Ts)(U —q)
dy D@ud - (1+2qu2+2q(1l—qu+0g2)’

(31)

where—Us (Us > 0) is the negative root of the quadratic equation that determines the steady state,
Us ~ (f — 1) for g small. For the values df that we are concerned with the right-hand side of
equation (31) is strictly positive far, < u < ua, whereuy, is the largest root of the denominator,
with

ub~%—q+~-~ for g small. (32)

Hence there is a valuey, of ¥ (Yo > 0) at which the solution of equation (31) becomes singular,
with du/dy — oo asu — u; and

U~ Up+ /28, (Y +yp)/2+ - asy — —Vo. (33)
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where
Up(Up — Us)(Up + Us)(Up — )

® T 2D@EUE - 1+ 2q)up +ad—q)’

Since the singularity & = —y arises from the denominator in equation (29) becoming zemg,at
which is wheredw/du — 0, expression (29) shows that

w~ wph+ Bp(Y+VYg) +--- asy — —Yp, (34)
where
_ Up(1 — Up)(Up + Q) __Up(Up—Ug)(Up+Ts) _ (Up— wp)
fup—q) Df (up — Q) D
Note that
A ~2f_1 ~ ! B ~1_ for g small
b="gp * "= 21 "~ Dt a '

The singularity aly = —Y, leads to region Ill where we put
t=EX2¥+Yy), u=up+|EI"Y3U,  w=uwp+|EI"Y3W. (35)

The leading-order problem in this region gives

dw —
DE = —(up —wp), henceW = — <ub ow> ¢ (36)
on matching with region Il, and then after a little algebra
du
o~ POy gr_0 U~ 2Rt ast - oo, (37)
dc  2Ap
2A,(3u2 — (1 + 2q)u 1- 2f -1
where By, = b(3up — € J; q)zb A€ q)), with Bp ~ for g small. We can solve
ug—q
equation (37) in terms of Airy function88) to give, on satisfying the boundary condition,
2 /3 ., - 2 1/3
U — _ [ (2A0)%€c A|' (5)’ where T = LZ . (38)
Po Ai(©) 2An(€Co)

Expression (38) becomes singularcat ¢, where¢, is the first zero of the Airy functiongg =
—2.3381), with

2ApeCy

PORE . ke ST _ 39
Bo(& — ¢o) * asf % (39)

To continue we need a further region, region IV, in which we put [E|Y3(¢ — o) = y +
|E|Yo — |E|Y3¢o and leaveu andw unscaled. Thus the equations in region IV are essentially the
same as those in region | with nopas independent variable. Following the analysis of region | we
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find that noww = wp to leading order, on matching with region Ill. This result modifies slightly
the leading-order equation far which we can now write as

” ’ (U—Ub)z qub
u” + cou’ — u-— =0, 40
o T < u2 ) (40)

where primes denote differentiation with respeci taubject to the matching condition that

+-.-- asn— oo. (42)

A consideration of equation (40) shows that

fquy, (1 —up)(up+q)

u— UC == -
u2 Up(Up — Q)

asn — —oo, (42)

whereuc ~ g for g small.

To complete the asymptotic expansion we require a final region, region V, where wé put
|E|~1n. The equations for this region are, at leading order, essentially the same as in region |1, with
Y as the independent variable, though now subject to

Uu—Ue, w—wp asY —0". (43)

From equation (29) we find that the equation fois effectively given by (31). Here; < us (at
least for smalfj) and so the numerator in equation (31) is negativeufor the rangealc < U < Us.
The denominator has a zerowfand, for smally, atu = u; ~ (1 + +/2)g. Now the condition to
have a solution a€€| — oo is thate < 0, which, for smally, isthat f > 14++/2 orus < (14++/2)q.
Thus under these conditions; is less than the value af;, where the denominator of (31) is zero,
with the denominator then being positive foy < u < us. Hencedu/dY < 0 over this range and
equation (31) then shows that— us, w — Us asY — —oo, the conditions at the rear of the
wave. Note that it can readily be shown by direct substitution that hawing 0 corresponds to
having(dw/du)y, = 0, using the form fow = w(u) given in (29).

The above analysis shows the structure of the wavedplarge (andy small). There is a region
(region 1) at the front of the wave, dD(1) thickness, whera increases from the small values
associated withug to a value of approximately unity and remains unchanged at. It isthe
solution in this region that fixes the wave speed, which is independdbtinfthis limit. There is
then a wider region (region Il), of exte@(|E|), in which the value ofi falls to approximatel;%
andw increases to its maximum valug,, of approximately 14 f. This region ends in a singularity
in the solution foru and to remove this singularity two further regions (regions Il and 1V), of extent
O(|E|Y/3) and O(1) respectively, are required. In these regiansemains atwp to leading order.

At the end of region IVu has fallen to a small value of approximatelynd it is in the final region,
region V, of extentO(|E|), whereu increases back tos andw approachesis from above. The

width of the wave is determined mainly by regions Il and V, giving an overall exte@@E|).

Finally we note that the approach to the boundary conditions at both the front and rear of the wave
is consistent with that given by (22), (23).

The form of the wave described above is seen in the numerical solutions of the travelling wave
equations, the spread of the wave increases Méftand the maximum values afandw approach
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values of unity and 24 f respectively as$E| is increased (see Fig. 4). AE| increases the wave
speeds approach (finite) limiting values, as given by (25), (26), with these values being independent
of D. This can be seen in Figs 3a, 5a and 7a, with values for the larger values ofE| being
consistent withcy calculated from (25), (26), these values are essentially the ones giv8)in (

The result that wave speed is independenbDdbr |E| large can clearly be seen by comparing the
curves forf = 3.0 and large/E| in Figs 5a O = 1) and 7a D = 0-3). The development of the
various regions identified in the above asymptotic analysis for l&ges becoming apparentin the

u profile for E = —20-0 in Fig. 4a.

3.2 Numerical simulations

We solved the initial-value problem given by equations (12), (13) using an implicit method based on
the Crank—Nicolson scheme with Newton—Raphson iteration to solve the nonlinear finite-difference
equations. We started with the system in its spatially uniform steady state (14) and applied a
localized perturbation ta, usually puttingu = us + 0-3 in a region of width 20 centred orx = 0.

We allowed waves to develop, one propagating in the poskigirection and one in the negative
x-direction, before the electric field was switched on, as suggested by experidhénts/e need

treat only positive values @ as the effect of the electric field on a wave propagating in the negative
direction is equivalent to taking E. We used a space stepx = 0-05, the time step\t was varied

to maintain accuracy, usuallt = 0-0032. The number of grid pointd was determined by the
context, typically we tookN = 4000. No-flux boundary conditions were applied at the ends of the
computational domain.

The first consideration is the stability of the travelling waves. Calculations of the temporal
eigenvalues reported i) (for E = 0) show that the solutions on the upper branch (Figs 3a, 5a)
are stable and those on the lower branch unstable. We did not perform these stability calculations
for E # 0 here. However, in all the numerical integrations that were performed it was only waves
on the upper branch that developed in the initial-value problem. This suggests that, in this case as
well, the upper branch solutions are temporally stable and the lower branch solutions unstable.

Weillustrate the development of the waves in the electric field in Fig. 8 with grey-level plots of
w for f = 2.35 with E = 0-9 (Fig. 8a) andE = 2.0 (Fig. 8b). In both cases the electric field is
switched on at = 6-0 with a polarity indicated in the figure. For the smaller valud=ofve can see
aslight deceleration and thinning of the wave propagating towards the negative electrode. There is
acorresponding acceleration and thickening of the wave propagating towards the positive electrode.
These changes in speed are relatively small, in line with Fig. 3a. In the stronger field (Fig. 8b)
we see the fairly rapid annihilation of the wave propagating towards the negative electrode (here
E > En) with again the acceleration and thickening of the wave propagating towards the positive
electrode.

In all the cases that we considered where- Ep,, the waves propagating towards the negative
electrode were annihilated when the electric field was applied. This suggests that the saddle-node
bifurcation atEy, is a strong cut-off value for wave propagation. We next examined the alternative
mechanism by which single pulses were terminated at their ‘non-existence’ curve (see Fig. 5b,c).
We illustrate this case in Fig. 8c with a grey-level plotwffor E = 10-0 and f = 2.32. For this
case we switched the electric field onta: 0 and only a wave propagating towards the positive
electrode forms in this strong field. For this value fothe solution terminates & = —6-0014
so there is no single pulse that will travel towards the positive electrode. What we do find is the
development of a wave train propagating towards the positive electrode. The starting point (local
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Fig. 8 Grey-level plots ofw, obtained from numerical integrations of the initial-value problem (12), (13),
for(@d E =09, f =235, (b)E = 2.0, f = 2.35, electric field switched on &t= 6.0.
(c) E =100, f = 2-32, electric field switched on at= 0. The values of the other parameters are
g = 0-002 ¢ = 0-05, D = 1.0. The dark colours correspond to higher concentrations

pacemaker) for these waves moves towards the negative electrode as further waves form in the wave
train. A similar situation arises in the case without electric fields when the single pulse solution has
terminated at an RH curv&{, 39).

A feature that is observed experimentally is wave revergal Whereby the direction of
propagation of the wave is changed when the polarity of the electric field is reversed. We can
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Fig. 9 Wavereversal forE = 40.0, with a plot of the position of the wave, against. The polarity of the
field was switched dt = 8-06. The values of the other parameters are
f =235 q=0002 ¢ =005 D=10

find this behaviour in our model provided the electric field strengths are relatively high. In this case
we start with a high positive field switched ontat 0. In this field only the wave that propagates
towards the positive electrode forms. If we then reverse the polarity of the field after this wave
has fully developed, its direction of propagation is changed, though it still propagates towards the
positive electrode. This is illustrated in Fig. 9 f&r = 400 and f = 2.35, q = 0002 ¢ =

0-05, D = 1.0 with a plot of the position of the wave,,, monitored by the maximum value of
againstt, with the polarity of the field being changedtat= 8-06. Reversal occurs by the wave

first rapidly slowing down and then stopping when the polarity is changed uTirefile starts by
reducing in size as the ‘tail’ of the profile moves through the wave, with a sharp front appearing
towards the new positive electrode. As this profile is being establishad phefile starts to grow,
reaches its maximum value and then the wave starts propagating in the reversed direction, having
the same form and speed as before field reversal.

The numerical integrations show that a high valuelas required for this to happen. For smaller
values ofE, though still aboveE, so that only waves propagating towards the positive electrode
form, the wave that does form is annihilated when the polarity is reversed. For the above parameter
values we found wave reversal Bt = 300 and annihilation withE = 25.0. The numerical
simulations suggest that a necessary condition to see wave reversal is a long recovery ragion for
andw compared to the excitation region. Thus high field strengths are required (see Fig. 4). This
is also borne out when we perform numerical integrations Wita- 2.0. In this case the recovery
region is, for the same field strength, longer thanDo& 1.0. In this case we find wave reversal at
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Fig. 10 A grey-level plot ofw obtained from numerical integrations of the initial-value problem (12), (13) for
E=09 D=03 f =225 q=0-002 ¢ = 0.05, electric field switched on &at= 0, to illustrate the
formation of two wave trains. The dark colours correspond to higher concentrations

smaller values oE, with the change from reversal to annihilation occurring betwieea 18.0 and
E =175.

For D = 0-3 we noted that there were values bfat which waves form only in positive fields
(see Fig. 7a). So there are field strengths for which single pulses cannot form in either a positive or
a regative field. In this case two wave trains form, one propagating towards the negative electrode
and one propagating towards the positive electrode. We illustrate this behaviour in Fig. 10 with a
grey-level plot ofw for f = 2.25 andE = 0.9 (with g = 0-002 ¢ = 0.05) and with the field
switched on at = 0. The figure shows the formation of the two wave trains. The wavelength of the
wave propagating in the positive direction is greater than that propagating in the negative direction.
To accommodate the formation of both wave trains requires the initiation site to move towards the
positive electrode as the waves form, as can be seen in the figure.

4. Discussion

We have considered the effect of applying electric fields to waves propagating in the BZ system,
which we have described using a two-variable version of the Oregonator model. In thigs Br
taken to be varying quasi-statically with the two active species HBEr@ ng{ (ferriin), the electric

field being taken to act only omg’;f. We have examined the travelling wave equations (18), (19)
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for this model in detail, both numerically and by an asymptotic analysis for large negative fields,
determining the conditions under which a single pulse wave could exist. We found that there were
two ways in which these solutions could be terminated. One was at a saddle-node bifurcation, seen
in plots of the wave speetlagainst the field strength (Figs 3a, 5a, 7a). This terminating value
of E could be positive or negative depending on the values of the other parameters. Numerical
integrations of the corresponding initial-value problem showed that waves propagating towards the
negative electrode were annihilated when field strengths greater than this were applied. The other
mechanism by which single pulses ceased to exist was through a change in sign of the eigenvalues
that determine the approach of the solution to the conditions at the rear of the wave. Field strengths
at which this occurred were determined by applying the Routh—Hurwitz criteria to equation (21) for
these eigenvalues. For field strengths less than this, wave trains were seen in the integrations of the
initial-value problem.

We can say a little more about these wave trains in the [gEgémit. They arise in the asymptotic
theory wherw > 0, that is, wherus > u1, whereus is the smaller positive zero of the denominator
in equation (31). In this case a singularity develops in the solutioM, &t —Ygp say, in region V,
similar to that in region Il. This can be removed via regions similar to regions Ill and IV in the
theory for a single pulse. This then returns us to region I, the equation for which now has to be
modified to

(u—up? [ fug u(1 — u)(us + @)
u” + cou’ + —u) =0, wherew;= 44
c e(U+Q) < u? ! f(ur—q) “4)
subject to the matching conditions
U~ €Co(Ur + Q) 4. asy— oo, U fw21q _ 1-unpui+9q as y — —oo
(1—uyy ug ur(ur —q)
(45)

to complete the periodic nature of the solution in this case. We note that this problem is independent
(1—upu1+0ag)q
o _ ui(ur —Qq)
that the wavelength of the wave train is given to a first approximatiaiygy Yo) | E|. The parameter

e can be scaled out of the problem as before by wrifing ¢ /2y, ¢g = ¢~ 1/2&,. A graph ofcg

againstg obtained from the numerical integration of equations (44), (45) is given in Fig. 11. The
figure shows thaty is relatively insensitive to changes inand decreases monotonically @ss
increased. The values of obtained for these wave trains are slightly higher than the wave speeds

for the single pulses at the parameter values whete0. For example, foe = 0-05, g = 0-002,

a =0atf = 2.3943. At this valuey = 7-201 for the wave train compared ¢g = 7-033 for the

single pulse.

The effect of applying an electric field was to decelerate or annihilate waves propagating towards
the negative electrode and to accelerate those propagating towards the positive electrode. The speeds
of these latter waves were bounded as the field strength was increased, as was clearly brought out
in the asymptotic solution for largee|. This gave a maximum propagation speed in an applied
electric field (for given values of the other parameters). This behaviour appears counterintuitive at
first sight, and is opposite to what is seen in autocatalytic syst2&® 32), as the ionic species
in our model has a positive charge. However, it is the behaviour that is observed experimentally,
see P) for example. Also, the effect of the electric field is to steepenl\ﬂj‘g“ profiles in waves

of the parametef depending only on the parametgrthat ~ 1 for q small and
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Fig. 11 A plot of the wave speety againsig of the wave trains in the largé&| limit, obtained from
equations (44), (45k = ¢~ Y/2¢&,

propagating towards the negative electrode and to lengthen them when propagating towards the
positive electrode (Fig. 4). This is also in agreement with experimental observa)ons (

Two other features that were observed experimentally are wave reversal and wave sglithing (

5). We were able to get wave reversal in our model when the polarity of the field was changed,
though only at relatively high field strengths. These electric field strengths are very much higher
than are needed for annihilation and are probably unrealistic experimentally. We could reduce the
field strength needed for reversal by increasing the value of the ratio of the diffusion codifients
Again this is not realistic experimentally & ~ 0-3 from values quoted in4). However, a critical
difference between wave reversal seen experimentally and in our model is that, in the experiments,
it is waves propagating towards the negative electrode that change direction when the polarity is
reversed Z). In our model, it is the opposite case, it is waves propagating towards the positive
electrode that change direction. We were unable to find any wave splitting in our model. We did
see wave trains (Figs 8c, 10) but these propagated in the same direction as the initial wave, whereas
in wave splitting 2, 3,5) the secondary waves propagate in a direction opposite to that of the initial
wave.

A critical feature of our model is the reduction from three to two variables via (11). This is a
standard approximation that is frequently used in modelling BZ systems and we briefly examine the
consequences of following this approach. We concentrate only on the casé&ewh@mand, taking
the same valuesf( = 2-35, ¢ = 0.05, q = 0-002 Dw = 1.0) for both models, we computed
the wave profiles from the corresponding initial-value problems for the two-variable (reduced) and
three-variable versions of the model; for the three-variable case westoek0.001, Dy = 1.0.

If we compare thar andw profiles for the two models, we find that they have comparable initial
slopes at the front of the wave. However, both profiles achieve somewhat higher maxima in the
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Fig. 12 Plots ofv, the dimensionless concentration of Brobtained from the two-variable model (12), (13)
(full line) and the three-variable model (6) to (8) (broken line) foe= 0, f = 2-35 and
€ = 0.05, ¢ =0.001, g = 0002 Dy = Dy =10

two-variable version compared to those in the three-variable case, being about 12 per cent higher.
The spread of the waves is comparable in both models. Perhaps the best illustration of the difference
between the two models is provided by thprofiles (a dimensionless version of the concentration

of Br™). This is computed directly in the three-variable model and from (11) in the two-variable
case. These profiles are shown in Fig. 12. Both profiles have a similar shape, with a fall to small
values in the concentration at the front of the wave, achieving a relatively high maximum value
before falling to the steady statg = fus/(us + q) at the rear of the wave. However, there are
significant differences between the two profiles, the extent of the region of small concentrations at
the front of the wave is greater and a considerably higher maximum value is achieved in the two-
variable model, about 70 per cent higher, with a correspondingly sharper peak in this profile. The
approach to conditions at the rear of the wave is monotone in the two-variable model whereas, in
the three-variable model, there are small oscillations in the concentrations at the rear of the wave.
Finally, perhaps the most significant difference between the two cases is in the wave speeds. This
is somewhat higher ~ 6.1, for the two-variable model comparedda~ 4-8 in the three-variable

case.

The two-variable Oregonator model predicts many of the features seen experimentally when
electric fields are applied to BZ systems, giving some qualitative agreement with observations. Thus
it is a useful guide for predicting and understanding many of the underlying mechanisms. However,
the above considerations, admittedly for only one set of parameter values, suggest that using the
quasi-static approximation (11) for the concentration of Brnot a particularly viable assumption
if more quantitative agreement is required or to obtain some of the fine detail, for example, the wave
reversal seen experimentally or wave splitting. These latter features are much more dependent on
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the detailed movement of the ionic species; Bind ng+, in the applied electric field2(3) and
could be expected to require the full three-variable version to model them. The strong inhibitory
nature of Br on the BZ reaction is well established; s&for example. It is consumed within the
excitory part of the reaction and very small concentrations of this species have to be achieved before
the reaction can proceed furthdO]. Thus the detailed migration of Brwithin the electric field,
which is described only loosely by the two-variable model, can have a strong controlling influence
on the nature of wave propagation.

From equations (6) to (8) it might be thought that the ratiGe = 2k4/k> would be a better
measure of the validity of the quasi-static approximation (11) rather thar’juStur results have
€’ /e = 0-02 and the differences we found between the two cases are perhaps greater than might be
expected with this ratio. One point to mention in favour of using the two-variable model is that the
time step needed to obtain our results for the three-variable modehwas 0-001, making any
numerical search of the three-variable model a much lengthier proposition.
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