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The efficacy of contact tracing, be it between individuals (e.g. sexually transmitted diseases or severe acute

respiratory syndrome) or between groups of individuals (e.g. foot-and-mouth disease; FMD), is difficult to

evaluate without precise knowledge of the underlying contact structure; i.e. who is connected to whom?

Motivated by the 2001 FMD epidemic in the UK, we determine, using stochastic simulations and

deterministic ‘moment closure’ models of disease transmission on networks of premises (nodes), network

and disease properties that are important for contact tracing efficiency. For random networks with a high

average number of connections per node, little clustering of connections and short latency periods, contact

tracing is typically ineffective. In this case, isolation of infected nodes is the dominant factor in determining

disease epidemic size and duration. If the latency period is longer and the average number of connections

per node small, or if the network is spatially clustered, then the contact tracing performs better and an

overall reduction in the proportion of nodes that are removed during an epidemic is observed.
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1. INTRODUCTION
Contact tracing, or the identification of individuals that

have been in contact with an infectious individual, is

commonly used to identify newly infected cases, pre-

ferably before they become infectious. Contact tracing was

used successfully in the control of the recent epidemic of

severe acute respiratory syndrome (SARS; Lipsitch et al.

2003; Riley et al. 2003) and is also important in the control

of sexually transmitted diseases (STDs; Clarke 1998;

FitzGerald et al. 1998; Macke & Maher 1999). While in

these examples contact tracing occurs at the individual

level, in the case of foot-and-mouth disease (FMD),

identification is at the group level; tracing of farming

premises that have been in ‘dangerous contact’ (DC) with

infected premises (IPs) is a central pillar of traditional

disease control (Haydon et al. 2004). Contact tracing has

had varied success in controlling disease. For SARS,

contact tracing was considered to have been successful,

although only a small proportion of quarantined persons

actually had the disease. By contrast, contact tracing was

considered to be ineffective in the recent 2001 FMD

epidemic in the UK (Ferguson et al. 2001a,b; Keeling et al.

2001; Kao 2003), because resources were insufficient to

identify and remove sufficient DCs quickly enough. When

and why contact tracing is useful has been the subject of

recent interest (Huerta & Tsimring 2002; Eames &

Keeling 2003).

Motivated by the FMD epidemic, the problem of the

efficacy of contact tracing on a network of farming

premises is addressed, and those network- and disease-

related properties that affect contact tracing efficiency are

identified. Prior mathematical models of contact tracing

on networks have considered disease structures where

network nodes are considered to be susceptible (S ),

infectious (I ), detected and triggering tracing (T ) and
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either recovered and susceptible again (Eames & Keeling

2003) or removed (R; Huerta & Tsimring 2002).

However, for many diseases there is a latent or exposed

(E ) stage; i.e. a significant delay before nodes become

infectious, and this is the case for FMD IPs. As a latent

stage should make contact tracing more effective (Fraser

et al. 2004), we consider contact tracing on a network

where the disease course includes latency.

Stochastic simulations and themoment closure method

(Rand 1997) were used to analyse the epidemic dynamics.

First, a network-based stochastic simulation is used, and

thereafter, a deterministic model based on the moment

closure approach is discussed and the results from the two

different approaches are compared. We show conditions

under which the introduction of the exposed group

increases the efficiency of tracing. We also show conditions

under which the main effect of contact tracing is to remove

susceptible premises before they become infected, rather

than removing exposed and/or IPs directly.
2. METHODS: DETERMINISTIC AND STOCHASTIC
MODELS
(a) Epidemiological processes

Premises (farms, markets or livestock holdings) can be

classified as belonging to one of five different disease states.

Susceptible premises (S ) hold only susceptible animals.

Exposed premises (E ) contain some animals incubating

disease and possibly some that are infectious, but the

numbers of infected animals are insufficient for it to be a

likely source of infection. Infectious premises (I ) hold

sufficient infected animals that transmission is likely to

occur; this may occur either by direct contact (movement of

infected animals into susceptible premises) or indirect contact

(transfer of virus without movement of infectious animals

onto susceptible premises via equipment movement, aerosols

or fomite transfer). While direct and indirect transmissions

have distinguishing characteristics (in particular, time to
q 2005 The Royal Society



Figure 1. Possible transitions among the five different classes
and the corresponding rates of transitions.
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infectiousness), it is assumed for the purposes of this study

that these are the same. Positively diagnosed (e.g. by presence

of clinical signs or diagnostic test) infectious premises (T )

trigger DC tracing, are immediately isolated and no longer

infectious. They are responsible for triggering primary

tracing. Finally, removed premises (R ) are those that have

been isolated, either by removal of all susceptible animals or

by quarantine prior to removal; they are no longer infectious

and do not initiate tracing.

A logical way to model contact tracing among farms,

markets and livestock holdings is to consider explicitly the

underlying contact structure, i.e. the set of all the connections

between the different premises. Each premises is then

considered to be a node in a connected network of nodes.

Consider N nodes and the set containing all the connections

amongst them: the degree k of a node n is the total number of

links between n and all the other nodes. If the nodes are

distributed on a regular lattice, the degree of each node is the

same; if the network is random, the degree distribution is

Poisson with a mean degree KZhk(n)i.

If all the nodes are represented by their state in the above-

mentioned five classes (SEITR), then the possible transitions

between states are those presented in figure 1, and described

below.

Infection S/E. The epidemic is seeded with one or more

infected nodes. Thereafter, infection progresses as a simple

contact process and the probability of a secondary infection

depends on the state of the nodes that a specific node is in

contact with. If a susceptible node has m infectious

neighbours only, then the probability of becoming exposed

during a time period of length Dt is given by 1Kexp(Kmr1Dt),

where r1 is the rate at which susceptible nodes become

exposed.

Tracing ‘errors’ S/R. Contact tracing may identify some

contacts that were not truly infectious (e.g. animal move-

ments where only uninfected animals were moved) at a given

rate r2. It is assumed that a node identified through contact

tracing cannot initiate further tracing; i.e. ‘secondary’ tracing

is suppressed. Therefore, a direct contact between a class (T )

node and a susceptible node results in a susceptible node

being traced and placed in the removed class (R ). In the

present model, tracing is assumed to be free from logistical

constraints.

Becoming infectious E/I. This is the transition of the

exposed nodes into the infectious class after the latency

period has elapsed, and occurs at a prescribed rate r3.

Tracing and removal of exposed nodes E/R. Exposed nodes

in direct contact with class (T ) nodes may be identified as
Proc. R. Soc. B (2005)
potentially infectious and are removed at a prescribed rate r4.

As with tracing of class (S ) nodes, this does not trigger further

tracing.

Direct identification of infectious nodes I/T. Disease

detected at an infectious node either through direct obser-

vation of clinical signs or via a diagnostic test will trigger

tracing. r5 is the transition rate of the infectious nodes into

class (T ) nodes and is a network-independent process.

Tracing of infectious nodes I/R. As with tracing of exposed

nodes, tracing of infectious nodes does not trigger secondary

tracing. While in principle further tracing might be triggered,

for FMD in 2001, this was rarely the case. This process

happens at rate r6.

Removing or culling of class (T ) nodes T/R. The removal of

class (T ) nodes with a given rate r7.We assume that no further

tracing occurs from a removed node. While this is not strictly

true, the assumption simplifies the system, and the effect of

continued tracing can be approximated by increasing the

tracing rate from (T ) class nodes. Further, late tracing is

likely to be less important for this system, as many infected

nodes would probably become positively diagnosed via

clinical signs.

(b) Network structure

A connection or edge between two nodes implies that

transmission from an infectious node to a susceptible one is

possible. For FMD in 2001, it is well known that most

transmission occurred over short distances, with only a few

occurring at long range (Ferguson et al. 2001a,b). This can be

interpreted as a clustering of connections, with probability of

connection decreasing with distance. Thus, the nature of

transmission will depend both on the number of contacts per

node, and the clustering, and we shall consider both.

The disease transmission on networks is investigated in

two ways: via stochastic simulation and a moment closure

approximation. Stochastic simulations are implemented on

random networks with average degree KZ5, 7, 10, 15, 20 and

NZ2000 nodes. For each random graph, we ran multiple

simulations starting each time with 10 different infectious

nodes. The rates for the above-described transitions are:

r1Z ðRMF
0 =K Þ=Inf_P , r2Z ðr02 =K Þ=Tr_P , r3Z1=Lat_P,

r4Z ðr04 =K Þ=Tr_P, r5Z1=Inf_P , r6Z ðr06 =K Þ=Tr_P and

r7Z1=Tr_P, where r0i (iZ1,.,7) are the different transition

rates in the equivalent mean-field compartmental model. The

basic reproduction ratio (R0) is well known to be the average

number of new infections resulting from the introduction of a

single infected individual into a wholly susceptible population

at equilibrium. Here, R0
MF is the basic reproduction ratio in

the mean-field model (R0
MF!K ). For individual-based net-

work models, it has been shown (Keeling & Grenfell 2000)

that R0 is lower than for the mean-field equivalent; this is a

result of the distributions of k and of the infectious period.

The rates describing transitions are renormalized by a factor

K to keep the transmission rate constant across different

networks; however, we note that R0 will be different across

different networks with the same disease parameters. The

parameters Inf_P and Lat_P are the average durations spent

by nodes in the infectious and exposed states, respectively.

Tr_P is the average duration spent by nodes in the (T ) class.

During this time, period neighbours of class (T ) nodes are

checked for possible infection. All the processes are con-

sidered to occur at the above-specified rates. The rates

defined above are consistent with values appropriate to the

recent FMD outbreak (Kao 2003).
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The effect of varying Lat_P, r2
0, r4

0 and r6
0 is investigated on

different random network configurations.
(c) The moment closure approximation

Let us denote by [S ], [E ], [I ], [T ] and [R ] the number of

nodes (i.e. the first moment) in any of the five classes at any

time. The temporal dynamics of these variables is determined

by the state of the nodes in the class that they are in direct

contact with. To quantify this let [AB ] denote the number of

direct contacts between nodes in state A and B at any time

across the entire network (i.e. the second moment). Likewise,

[ABC ] denotes the number of connected triplets (i.e. the

third moment) where a node in state A is connected to a node

in state B that is in turn connected to a node in state C.

Considering the possible transitions presented in figure 1, the

differential equations that describe the dynamics of the

individual classes are

½ _S�ZKr1½SI�K r2½ST �;

½ _E�ZKr3½E�K r4½ET �C r1½SI�;

½ _I�ZKr5½I�K r6½IT �C r3½E�;

½ _T �ZKr7½T �C r5½I�;

½ _R�Z r2½ST �C r4½ET �C r6½IT �C r7½T �:

9>>>>>>>>=
>>>>>>>>;

(2.1)

To solve these equations the time evolution of pairs of

connected nodes are needed.

½ _SS�ZK2r1½SSI�K2r2½SST �;

½ _SE�ZKr1½ISE�K r2½TSE�K r3½SE�K r7½SET �C r1½SSI�;

½ _SI�ZKr1½ISI�K r2½TSI�K r5½SI�K r6½SIT �K r1½SI�

C r3½SE�;

½ _ST �ZKr1½IST �K r2½TST �K r7½ST �K r2½ST �C r5½SI�;

½ _EE�ZK2r3½EE�K2r4½EET �C2r1½ISE�;

½ _EI�ZKr3½EI�K r4½IET �K r5½EI�K r6½EIT �C r1½ISI�

C r3½EE�C r1½SI�;

½ _ET �ZKr3½ET �K r4½TET �K r7½ET �K r4½ET �C r1½IST �

C r5½EI�;

½ _II�ZK2r5½II�K2r6½IIT �C2r3½EI�;

½ _IT �ZKr5½IT �K r6½TIT �K r7½IT �K r6½IT �

C r3½ET �C r5½II�;

½ _TT �ZK2r7½TT �K2r5½IT �:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(2.2)

The moment closure approach (Rand 1997) offers a sensible

way of avoiding an infinite set of ordinary differential

equations by ‘closing’ the system at the level of pairs and

approximating triplets as a function of pairs and individual

classes. For randomly connected networks, two different

closure relations are commonly used. These differ according

to the assumed error distribution under which the approxi-

mation is made. If this distribution of the error is Poisson,

then the closure relation used is

½ABC�z
½AB�½BC�

½B�
: (2.3)

If the distribution is similar to a Bernoulli distribution, then

the approximation used is

½ABC�z
K K1

K

½AB�½BC�

½B�
: (2.4)
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The closure relations (2.3) and (2.4) ignore the possible

correlations between the node in state A and node in state C,

which are both in direct contact with the same node in state B.

These correlations are small if the network is random.

However, in clustered networks there will be some hetero-

geneity in the probability of association between two nodes

(in social networks, for example, the probability that two

people will be friends will increase if they have a friend in

common, or for FMD farms, are likely to have multiple

common boundaries). To account for the correlation between

the node in state A and node in state C, a modified closure

relation is considered (Keeling 1999).

½ABC�z
K K1

K

½AB�½BC�

½B�
ð1K4ÞC4

N

K

½AC�

½A�½C�

� �
: (2.5)

Here, N is the number of nodes in the network, K is the

average number of connections per node and 4 is the

clustering coefficient of the network. The parameter 4

measures the degree of clustering in the network and is

given by the ratio of triangles to triples, where triples are

formed by any three nodes with exactly two connections

amongst them, while triangles have three.

Since equations (2.1) and (2.2) are independent of [R],

[SR], [ER], [IR], [TR] and [RR], it follows that the disease

transmission problem can be approximated by a system of 14

deterministic ordinary differential equations.
(d) Stochastic simulations

The stochastic simulations were implemented using synchro-

nous updating on computer-generated random and clustered

networks. According to this method, the state of a node at the

next time iteration (t0CDt) is solely based on the state of its

neighbours (the nodes that are directly linked to it) at the

current time (t0) and the different rates according to which

transitions between the classes occur. While the Gillespie

algorithm (Gillespie 1977) is generally accepted to be the

most efficient and appropriate method to stochastically

represent systems such as the mean-field version of equation

2.1, it is likely that for the present system, the spatial

correlations generated by synchronous updating are more

realistic, because of the regular (daily) decision-making

associated with contact tracing in our example. If the time-

interval Dt used in the synchronous updating scheme is

sufficiently small, then our scheme rapidly approaches the

asynchronous updating scheme, where only one event

happens during each iteration.

The generation of purely random networks is straightfor-

ward: networks were generated by assigning random prob-

abilities to all the possible links, with only those links whose

probability was smaller than a prescribed probability p

included in the network. The average number of connections

per node, K, is thus defined by pN. To generate clustered

networks, we used the method described by Read & Keeling

(2003). The nodes were distributed uniformly on a square of

size
ffiffiffiffiffi
N

p
with their corresponding (x,y) coordinates. The

distance-based connection probability between two nodes is

given by pijZp expðKd2
ij =2D2Þ, where dij is the Euclidean

distance between node i and j, and pZK/2pD2 if the system is

infinite. Given the finite system size there will be a

discrepancy between the prescribed and generated K. To

obtain the prescribed K, a trial network is needed on which

p is repeatedly readjusted until the generated network has

an average number of connections per node equal to the

desired K. The parameter D controls the clustering: Dz1
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corresponds to highly clustered networks and Dz50 gen-

erates random networks with minimal levels of clustering.

Multiple stochastic realizations of the epidemics were

considered on the computer-generated random and clustered

networks. The results were averaged over different networks

and different realizations of the epidemic on each individual

network. The number of networks and epidemic realizations

to be averaged was determined by taking into account the

differences between the consecutive averages of m and (mC1)

single realizations, respectively.
Figure 3. Final epidemic size
Ð
r3EðtÞdt

� �
corresponding to

different latency periods (Lat_P ). Results were obtained by
solving differential equations (2.1) and (2.2) by first applying
the closure relation (2.3). The other parameter values are:
R0
MFZ3.0, Inf_PZ3.5, Lat_PZ3.5, Tr_PZ2.0, r2

0Z2.5,
r4
0Z2.5 and r6

0Z2.5.

Figure 2. The time evolution of the epidemic from both
stochastic (continuous lines) and deterministic (dashed lines)
approaches for KZ5, 10 and 20. The other parameter values
are: R0

MFZ3.0, Inf_PZ3.5, Lat_PZ3.5, Tr_PZ2.0, r2
0Z2.5,

r4
0Z2.5 and r6

0Z2.5.
3. RESULTS
(a) Comparison of the stochastic and deterministic

model for purely random networks

For random networks (no clustering), the closure relation

(2.3) is used to explore the effects of different parameters.

If K is sufficiently large, the closure relation (2.4) gives

similar results to stochastic simulations. However, for

small values of K, the first approximation has better

agreement, and is therefore used hereafter. Figure 2 shows

the time evolution of an epidemic from both stochastic

simulations and numerical solutions of the moment

closure equations for a fixed set of disease transmission

parameters and K values. To stabilize the results, the

epidemic is seeded with 10 randomly placed infected

nodes; this results in the transient dip at the initial stages.

Parameters are chosen to be reasonable for FMD

transmission between farming premises. The discrepan-

cies between the models are small for large values of K,

corresponding to a more densely connected random

network; however, if K is decreased, the agreement

between the two models is less precise.

(b) The efficacy of tracing

To investigate the effect of the exposed (E ) class on the

tracing efficiency, the final epidemic size
Ð
r3EðtÞdt

� �
is

computed, using the deterministic model, for different

average durations spent by nodes in the exposed state

Lat_P. These computations are shown in figure 3 for

random networks with different K values. As expected,

increasing the duration of the exposed state (large Lat_P )

reduces the final epidemic size due to the extra time

available for tracing to identify and remove or isolate

infected nodes quickly: preferably before they become

infectious. This effect is much stronger for small K; if the

average number of connections per node is reduced,

removal of a connection reduces a greater proportion of

the contact network, and so tracing efficiency increases.

The higher the value of K, the less the impact of removal of

a single connection.

There are two mechanisms by which the potential size

of an epidemic can be reduced. First, removal of

susceptible nodes with rate r2
0 isolates infected nodes and

limits disease spread. Second, removal of exposed and

infectious nodes, with rate r4
0 and r6

0, respectively, shortens

the transmission period of infected nodes. Here, we

investigate the relative importance of these two mechan-

isms under more general network assumptions. Depend-

ing on the average number of connections per node (K )

and the extent of the latency period Lat_P, we investigate

the final size of the epidemic, the proportion of the

susceptible nodes that were removed, the proportion of

exposed and infectious nodes that were removed and the
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proportion of all the nodes eventually removed by the end

of the epidemic (R(N)), for a wide combination of the

tracing rates. Since the average number of connections per

node and the latency period has similar effects on disease

contact tracing, only the two most contrasting cases are

presented in the paper. First, in figures 4a and 5a the case

of small K and large latency period is presented. Second,

in figures 4b and 5b the case of large K and short latency

period is discussed. While the first case represents optimal

conditions for contact tracing, the second case makes

contact tracing difficult. The case of small K and short

latency period and the case of large K and long latency

period are presented in the supplementary material

section (see Electronic Appendix).

Figure 4a,b show the final epidemic size (continuous

lines) as a function of the removal rate of susceptible nodes

r2
0 and the removal rate of exposed and infectious nodes

r4
0Zr6

0. For relatively few connections (small K ) and long



Figure 4. Contour plots of the final epidemic size, i.e. the proportion of all the nodes that eventually become infected during the
epidemic (continuous lines) and R(N), i.e. the proportion of all the nodes that were removed by the end of the epidemic (dashed
lines). The two plots contrast the case of effective tracing (long latency period and few connections per node) with the case of
less effective tracing (short latency periods and many connections per node). The other parameters used were: R0

MFZ3.0,
Inf_PZ3.5, Tr_PZ2.0 and (a) KZ5, Lat_PZ10.0 and (b) KZ20, Lat_PZ3.5.

Figure 5. Contour plots of the proportion of both susceptible nodes (continuous lines) and exposed and infectious nodes
(dashed lines) that were removed by tracing during the epidemic. The two plots contrast the case of effective tracing (long
latency period and few connections per node) with the case of less effective tracing (short latency periods and many connections
per node). The other parameters used were: R0

MFZ3.0, Inf_PZ3.5, Tr_PZ2.0 and (a) KZ5, Lat_PZ10.0 and (b) KZ20,
Lat_PZ3.5.

(a) (b)

Figure 6. Final spatial spread of an epidemic for: (a) a random network with KZ10, 4z0 and (b) clustered network with KZ10,
4z0.50. The other parameters used were: R0

MFZ3.0, Inf_PZ3.5, Lat_PZ3.5, Tr_PZ2.0, r2
0Z2.5, r4

0Z2.5 and r6
0Z2.5. Empty

circles represent susceptible nodes not affected by the disease and full circles are nodes that were removed by the end of the
epidemic.

Disease contact tracing I. Z. Kiss and others 1411
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Figure 7. Final epidemic size (continuous lines) and R (N;
dashed lines) plotted for different latency periods (Lat_P ) for
different random spatially clustered networks. The other
parameters used were: KZ10, R0

MFZ3.0, Inf_PZ3.5,
Lat_PZ3.5, Tr_PZ2.0, r2

0Z2.5, r4
0Z2.5 and r6

0Z2.5.

Figure 8. Plots of the final proportion of susceptible nodes
(continuous lines) and exposed and infectious nodes (dashed
lines) removed through tracing during the epidemic for
different latency periods (Lat_P ) for different random
spatially clustered networks. The other values of the
parameters are: KZ10, R0

MFZ3.0, Inf_PZ3.5, Lat_PZ3.5,
0 0 0
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latency periods (large Lat_P ; figure 4a), the final epidemic

size is relatively small and is more sensitive to the removal

of exposed and infected nodes than it is to the removal of

susceptible nodes. In this case, a small increase in tracing

(r4
0 and r6

0) has the same effect as a larger increase in the

removal rate of susceptible nodes r2
0. With more connec-

tions and a shorter latency period (figure 4b), it is more

difficult to control the epidemic and the final epidemic size

is higher than in the previous case (figure 4a) and the

removal of susceptible nodes becomes more important.

The total number of removed nodes or R(N) is plotted

(dashed line) in figure 4a,b. The removal of susceptible

nodes has a limited effect on R(N). While higher levels of

tracing reduce the epidemic size, R(N) stays the same

owing to the higher proportion of susceptible nodes being

removed. This suggests that if the average number of

connections per node is sufficiently low and the latency

period is sufficiently long, then contact tracing can

efficiently control the final outcome of an epidemic by

reducing the infectious period of infected nodes (pre-

ferably to zero). However, if K is too large or the latency

period is too short, figure 4b shows that although the final

size of the epidemic is similar to that in figure 4a, R(N) is

much higher: many nodes that were not infected were

removed. Hence tracing, even if aimed primarily at

removing exposed and infectious nodes, targets and

removes susceptible nodes at a higher rate. Figure 5a,b

shows contour plots of the proportions of both susceptible

nodes and exposed plus infectious nodes that were

removed through tracing. A higher proportion of suscep-

tible nodes were removed on average through tracing, even

in the case where the tracing of exposed and infectious

nodes occurs at a much higher rate.

In figure 5a, more than one combination of tracing

rates can result in the same number of nodes removed

by tracing (e.g. at r4
0Z1.35, r4

0Zr6
0z1.9 and r4

0Z2,

r4
0Zr6

0z3.4). This does not occur for the parameters in

figure 5b, and is explained by the early extinction of the

epidemic in the case where the tracing levels are higher.

This illustrates the efficacy of contact tracing when K is

small; in this case, even though R0 is above one, high levels

of tracing stop the epidemic early and with fewer nodes

removed by tracing.

Tr_PZ2.0, r2Z2.5, r4Z2.5 and r6Z2.5.
(c) Clustering effects

A randomly connected network will propagate disease

much farther than a spatially clustered network, despite

having the same average number of connections per node

(figure 6; Watts & Strogatz 1998). In the randomly

connected network, there are infected nodes throughout

the system, whereas the highly clustered network shows

localized, wave-like spread of the disease within a

particular cluster of nodes.

The disease dynamics and spread depend strongly on

the local density of susceptible nodes. If the disease enters

a cluster of susceptible nodes that are interconnected by

short-range links, and there are only occasional long-range

connections leading out of the cluster, it is plausible that

the disease can be trapped within the cluster. Therefore,

clustering means fewer susceptible nodes available for the

disease to spread to. Occasionally, depletion of susceptible

nodes in a cluster can stop the propagation of the disease

in that specific area.
Proc. R. Soc. B (2005)
For clustered networks, the comparison between the

results from the moment closure approach on using

approximation (2.5) and stochastic simulations on clus-

tered networks shows good agreement only if the level of

clustering is sufficiently low (Levin & Durrett 1996). To

capture accurately the effect of higher clustering, we use

stochastic simulations hereafter to compute the final size

of the epidemic and R(N) for networks with different

levels of clustering. The results are presented in figure 7.

Contact tracing is considerably more effective in clustered

networks and both the final epidemic size and R(N) are

much smaller compared with the random network case

(Eames & Keeling 2003).

The probability of identifying a potentially dangerous

node increases in clustered networks due to many different

class (T ) nodes linked to the same potentially dangerous

individual within the cluster. Even if tracing from such a

particular node fails to detect a potentially dangerous

node, then tracing from another node within the cluster
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might still find it—tracing successfully shortens the

transmission period of the traced node, even though the

tracing did not occur via the infectious link. Figure 8

shows the proportion of the susceptible nodes and the

proportion of exposed plus infectious nodes that were

removed; in this case, the tracing rate of susceptible nodes

(r2
0) is equal to the tracing rate of the exposed and

infectious nodes r4
0Zr6

0. Although the proportion of the

removed nodes, in general, is smaller than in the random

network case, the proportion of susceptible nodes that

were removed is still higher than the proportion of infected

(exposed plus infectious) nodes that were removed for this

set of transition rates.
4. DISCUSSION
Contact tracing will inevitably involve the identification

and removal of some nodes that are not infected. It is

therefore important to know what proportion of the total

population is removed via tracing, and how it relates to the

proportion of exposed and infectious nodes that were

removed, to the final epidemic size and to R(N) for

different contact structures and disease-specific

parameters.

Figure 5 shows that the proportion of all the susceptible

nodes removed through tracing represents a considerable

part of the total removed population for all the parameter

combinations considered, with the highest values obtained

in the case of large K and short latency period. Thus, while

not typically the intent of contact tracing, the dominant

effect may be the removal of susceptible nodes even if

nodes are connected at random over a large group (in this

case, 2000 nodes). Removal of tracing’s primary targets,

exposed and infectious nodes, has only a secondary effect.

Evaluation of disease control based on tracing must

therefore consider the trade-off between the effort spent

identifying infectious contacts, and the problems associ-

ated with removing a large number of uninfected nodes.

For example, in the SARS epidemic (Lipsitch et al. 2003;

Riley et al. 2003), many individuals were quarantined due

to suspected contact with SARS. This was viewed as

acceptable, both because of fears over the potential effects

of a large epidemic, and because the impact on the

quarantined individuals was relatively small. By contrast,

in the FMD epidemic in the UK (Ferguson et al. 2001a,b;

Keeling et al. 2001; Kao 2003), millions of animals were

culled on farms suspected of harbouring FMD infection,

and this was generally viewed as unacceptable.

The average number of connections per node, the

degree distribution of the nodes and the degree of

clustering are important in understanding the value of

contact tracing and how different epidemiological mech-

anisms interact. Therefore, during an epidemic, any

information that can be inferred about these quantities is

valuable in assessing or deciding upon the most effective

measures that can control an epidemic, and these are

discussed in greater detail below.

If most connections are short-distance, premises close

to each other can form multiply connected clusters with

occasional long-range connections between clusters. The

epidemic dynamics on such clustered networks are

different in comparison to random networks. This extends

the result of Eames & Keeling (2003) by showing that

moderate clustering significantly increases the tracing
Proc. R. Soc. B (2005)
efficacy, by considering only primary tracing. Secondary

tracing is likely to enhance the impact of clustering, but it

may not always be possible; for example, if logistical

considerations limit the amount of tracing that can be

done, effort is likely to be concentrated on finding primary

contacts.

The length of the latency period is another factor that

influences the effectiveness of tracing: longer latency

periods allow more time for tracing, thus making it more

effective. If infected nodes quickly become infectious, then

the time for tracing is very short, and the value of tracing is

less. While including secondary tracing (i.e. tracing from

infected nodes identified via tracing) might affect our

results, for FMD, secondary contact tracing did not occur

unless existence of disease could be proven—in practice

this almost never occurred. In any case, including

secondary tracing in our model would only accentuate

the differences between the two contact structure extremes

(highly clustered connections with few contacts versus

randomly connected with many contacts). Given the low

impact of contact tracing in dense networks, the impact of

secondary tracing is likely to be small.

While these results are generally valid for randomly

connected networks or those in which clustering of

contacts is important, FMD in the UK is the motivation

for this work, and is discussed here in further detail. Soon

after discovery of FMD in the UK in 2001, a national

movement ban prevented almost all long-range livestock

movements and most of the short-range ones, greatly

reducing the range and rate of transmission (Ferguson

et al. 2001a). However, new cases after the movement ban

remained high, and therefore, revised policies to control

disease were implemented. These policies proved con-

troversial, with much of the criticism aimed at the

‘contiguous premises’ (CP) cull policy, to remove all

premises contiguous to IPs within 48 h of disease

identification. A major criticism was that many of these

premises were uninfected and culled unnecessarily. It is

also argued that the CP cull took resources away from the

contact tracing that was already in place (discussed in

Haydon et al. 2004). There has since been considerable

scrutiny of the justification for the CP cull, in particular,

aimed at the mathematical models that were used in ‘real

time’ to advise policy. These models used both a moment

closure approach (Ferguson et al. 2001a,b) and stochastic

simulations (Keeling et al. 2001). While similar to the

approach used here, in these FMD models, any IP is able

to infect any susceptible premises and the probability of

transmission decreases with distance. Other approaches

(Morris et al. 2001) were more complicated, but relied on

the same underlying transmission assumption. In the

approach used here, the probability of transmission is

equal for all connections, but the number of connections

changes and for clustered networks there is a decreased

probability of connection with distance. All the FMD

models showed that the CP cull would be effective in

reducing the final epidemic size. A related approach

showed that the CP culling policy may have been more

effective than a very good DC culling policy, but acknowl-

edged that the result is likely to be model dependent (Kao

2003). Another study showed that the number of premises

removed was insensitive to overculling, but favoured the

CP cull because it reduced the number of IPs and the

epidemic duration (Matthews et al. 2003).
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A comparison between the FMDmodels and themodel

presented here can be made by observing that in Kao

(2003), approximately 30% of transmission was assumed

to occur to the six nearest neighbours, which is approxi-

mately equivalent to the number of available CPs, and is

similar to the assumptions in other FMD models. If all

susceptible premises were equally susceptible, removing a

single susceptible CP would be equivalent to removing 5%

of the susceptible neighbourhood, and in this sense it is

roughly equivalent to tracing and removing a single

connected susceptible node in a network with KZ20.

Removal of a correctly identified DC is equivalent to

removing a single, connect and infected node. The FMD

models are therefore similar to moderately clustered

networks with high K values. Despite the differences in

approach, our analysis illustrates why the CP cull was

supported by the FMD models. Even with a significant

latent period, in a densely connected network (see figures

1b and 2b in the Electronic Appendix), depletion of

susceptible premises is more important than the early

removal of infected premises. Whether or not CPs were

truly at risk of infection is difficult to determine, and lies

outside of this discussion, but we note that an examination

of prior outbreaks of FMD in the UK suggests that

transmission of virus between premises is not always as

common as was supposed in 2001 (Haydon et al. 2004). If

the true value of K was somewhat lower than suggested in

the FMD models, this analysis suggests that contact

tracing becomes more valuable than previously indicated

(Kao 2003). Our results also confirm (figure 4) the

findings of Matthews et al. (2003) regarding insensitivity

to overculling, but also shows that this relationship breaks

down provided the number of connections per node are

sufficiently few, and the duration of the latency period

sufficiently long (figure 5a). If this is the case, the extra

effort of ‘good’ contact tracing canmake a difference to the

effectiveness of control.

Simple models are useful tools for analysing data and

establishing hypotheses of disease transmission and

control. They have the attractive feature that they are

robust, and because of their abstract nature, the tempta-

tion to abuse them is reduced (May 2004). However, the

increasing availability of powerful computers and the

development of more sophisticated models can lead to

model over-interpretation. Here, we have shown that

decisions between control policies that rely on contact

tracing depend on an accurate understanding of the

contact structure that underlies disease transmission,

determined through an analysis of data or independent

experimental evidence.

R.R.K. and I.Z.K. are funded by the Wellcome Trust.
D.M.G. is funded by DEFRA.
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