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Combustion initiation and extinction in a 2D chaotic flow
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Abstract

The evolution of a flame in a reaction–advection–diffusion combustion system in the presence of chaotic stirring by an
unsteady laminar fluid flow is considered. Two distinct regimes are found as the stirring rate is increased. When the reaction
is slow (or fast stirring) localised temperature perturbations decay—the flame is quenched by the flow. If the reaction is fast
(or slow stirring) a localised ignition leads to a stationary flame with complex filamental structure. The width of the filaments
depends on the reaction and stirring rates. This problem is investigated numerically in 2D for an open flow system formed
by two alternately opened point-vortex-sinks and the results are compared with previous results [Physica D 176 (1–2) (2003)
67–81] from a 1D ‘mean-strain’ model for the transverse profile of the flame filaments. The system is studied for different
Lewis and Damköhler numbers, with a critical Damköhler number being found, dependent on the Lewis number, for the
transition from trivial to combustion states. A comparison between time-periodic and steady flow regimes shows that chaotic
motion of the fluid elements in the unsteady flow significantly enhances the combustion.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the behaviour of chemical and biological processes which take place within an imperfectly mixed
(inhomogeneous) environment is an actively developing area of research at present, see[1–6] for example. Detailed
studies include the mixing of reactants within continuously fed or batch reactors[1], the spread of plankton blooms
within oceanic currents[3,5] and atmospheric dynamics[7]. Apart from their intrinsic theoretical interest these
problems have a number of industrial applications such as chemical reactors, industrial burners, the study of engines
and also in a range of geophysical problems. A 2D or 3D reaction–advection–diffusion system can be set up to
describe this type of problem. However, huge computational power is necessary to perform any realistic numerical
simulations. Any general information that can be obtained from simplified models of such systems is extremely

∗ Corresponding author. Fax:+44-113-343-5090.
E-mail address: istvan@maths.leeds.ac.uk (I.Z. Kiss).

0167-2789/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0167-2789(03)00172-6



176 I.Z. Kiss et al. / Physica D 183 (2003) 175–189

useful, as it can help explain the results obtained from numerical simulations as well as reducing the computational
time considerably by highlighting those specific cases that should be considered.

One such method is that developed by Neufeld et al.[8,9] (see also[10–13] for earlier work) which suggests
that a 1D model can be constructed if the advection in the system is chaotic[14,15]. Their idea is based on the fact
that in a 2D chaotic flow we can assign to any point in the flow a convergent and a divergent direction associated
with the eigenvectors corresponding to the negative and positive Lyapunov exponents of the chaotic advection.
These directions are, respectively, tangent to the stable and unstable foliations of the advection dynamics[16]. Any
advected material line tends to align along the unstable foliation in forward time, or along the unstable foliation in
backward time. Thus, the stirring process smoothes out the concentration of the advected tracer along the stretching
direction, whilst enhancing the concentration gradients in the convergent direction[17]. If we separate the original
2D reaction–advection–diffusion problem along the (Lagrangian) stretching and convergent direction we obtain a
1D equation for the average profile of the filament. This 1D model, called the ‘Lagrangian filament model’, retains
the main features of the original system allowing us to obtain insight into the more general case.

Fluid mixing plays an important role in combustion[18–22]. In a previous paper[23], we studied in detail the
1D filament model for a simple combustion reaction. We found that there was a critical Damköhler number with
Damköhler numbers greater than this being required to sustain combustion. This critical value is dependent on the
Lewis numberLe, increasing rapidly for small values ofLe though being virtually constant at highLe. We also
found that, for high Damköhler numbers, an inert, fully reacted core developed at the centre of the filament with
the reaction then being at a distance away from the centre. The temperature within the filaments decreases as the
Lewis number is increased and vice versa. These results from the 1D model guide our study of the 2D problem, in
particular, in trying to identify critical Damköhler numbers and their dependence on the Lewis number.

Our aim is to consider the effect of chaotic mixing within a combustion reaction, which we model as a first-order
process converting a fuelA to an inert productP through the reaction:

A→ P, rate= ak(T) (1)

with a positive exothermicityq. T is the (absolute) temperature anda is the concentration of reactantA. The
temperature dependence of the reaction rate is given by an Arrhenius law with an ignition temperatureTi, namely

k(T) =



k0 exp

(
− E

RT

)
if T > Ti,

0 if T ≤ Ti,
(2)

whereE andR are the activation energy and the universal gas constant andk0 the (constant) pre-exponential factor.
Our reason for choosing this form for the rate law is to avoid the difficulties associated with the cold boundary
problem. An alternative approach is, rather artificially, to set the ambient temperature to zero. The form given by(2)
allows for a non-zero ambient temperature and the discontinuity ink(T ) atT = Ti does not lead to any particular
problems in the numerical integrations providedTi is kept small.

Considering the dynamics of the reaction schemes(1) and (2)it can be show that there are two steady states,
(T, a) = (Ta, a0) and(T, a) = (Tb,0), wherea0 is the initial (uniform) concentration ofA, Ta (<Ti) is the ambient
temperature andTb = Ta + (qa0/ρCp) is the burnt gas temperature. The two (spatially uniform) steady states
correspond to the unreacted and fully reacted phases of the system.

Stirring is modelled by a simple time-periodic velocity field, representing an open flow system. The velocity field
v(r, t) is assumed to be independent of the concentration of the fuel and temperature. The results described in this
paper are expected to be valid for a wide class of 2D time-dependent laminar flows, since the only requirement of
our chosen flow field is that it produces chaotic motion of fluid elements. In our system, the reactant continuously
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flows into and then out of a finite mixing zone with constant temperatureTa and reactant concentrationa0 being
maintained at the inflow boundaries.

Advection in unsteady open flows has been shown to be governed by a chaotic scattering type escape process
generating fractal patterns of the advected tracers[24–27]. The key ingredient to this is the existence of an invariant
chaotic set formed by the union of all periodic and bounded aperiodic trajectories of fluid elements that bounce
around the sinks but never escape. The stable manifold of this chaotic saddle (set of trajectories that come from
infinity and end up on the saddle) is the boundary of the basins of attraction of the two point sinks. Such bounded
‘non-escaping’ trajectories are also typical of advection in unsteady flows formed in the wake of an obstacle[24,27].
Although the set of bounded orbits is unstable, typically a fractal set of measure zero, trajectories coming sufficiently
close to the chaotic saddle can be trapped for arbitrarily long time around it before they escape along its unstable
manifold. The unstable manifold of the chaotic saddle can be easily visualised by injecting a droplet of dye (ensemble
of marked fluid particles) into the mixing zone. As the total amount of dye in the mixing zone decreases in time the
remainder traces out the unstable manifold of the bounded chaotic set.

2. Governing equations

As an example of an open flow system we consider the velocity field around two alternately opened point-vortex-
sinks in an unbounded 2D domain, the ‘blinking vortex-sink’[26,28]. The fluid particles approach the mixing zone
from infinity and leave the domain through either one of the sinks. The velocity field composed of the superposition
of a point-vortex and a point-sink, is defined by the complex potential:

w(z) = −(C + iK) ln |z− zs|, (3)

wherez = x+iy,zs (zs = (±�,0)) is the position of the active sink andC andK the sink-strength and vortex-strength,
respectively. The velocity field corresponding tow(z) consists of the superposition of a radial componentvr = −C/r
and of a tangential componentvφ = K/r with the origin fixed at the active sink,r =

√
(x− xs)2 + (y − ys)2. In

Cartesian coordinates the velocity field can be written as

vx = −Cx − Ky

x2 + y2
, vy = Kx − Cy

x2 + y2
. (4)

The equations for the 2D reaction–advection–diffusion problem are

ρCp

(
∂T

∂t
+ v · ∇T

)
= κ T + qak(T ), (5)

∂a

∂t
+ v · ∇a = D a− ak(T ) (6)

in r ∈ Ω, t > 0, whereΩ = [−L/2, L/2] × [−L/2, L/2] is a square of sizeL covering the mixing zone. Here
ρ is the density,Cp the specific heat andκ,D are, respectively, the thermal conductivity and diffusion coefficient.
Eqs. (6) and (7)are subject to the boundary conditions that

T(r, t) = Ta, a(r, t) = a0 on r ∈ ∂Ω (t > 0). (7)

We are interested in the response of the system, initially in the homogeneous trivial steady stateT = Ta anda = a0,
to a localised perturbation in a form of a heat input (T > Ti) added to the system att = 0. By localised we mean
that the spatial extent of the perturbation is much smaller then the characteristic size of the mixing zone.
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In order to makeEqs. (5) and (6)non-dimensional, we introduce the following transformation:

T̄ = T − Ta

Tb − Ta
, ā = a

a0
, t̄ = t

T0
, r̄ = r

�
, (8)

whereT0 and�are the period of the flow and the half-distance separating the two sinks. This leads to the dimensionless
equations, on dropping the bars for convenience:

∂T

∂t
+

(−ηx− ηξy
x2 + y2

)
∂T

∂x
+

(
ηξx− ηy
x2 + y2

)
∂T

∂y
= DaK(T )a+ Pe−1Le T, (9)

∂a

∂t
+

(−ηx− ηξy
x2 + y2

)
∂a

∂x
+

(
ηξx− ηy
x2 + y2

)
∂a

∂y
= −DaK(T )a+ Pe−1 a, (10)

where

Da = k0T0, Pe = �2

DT0
, Le = κ

Dρcp
, η = CT0

�2
, ξ = K

C
(11)

are the Damköhler, Péclet and Lewis numbers, respectively.η andξ are the dimensionless sink strength and the ratio
of the vortex to sink strength. The parametersη andξ were kept at the same values ofη = 1.0 andξ = 10.0 for all
our numerical simulations, as suggested by Károlyi and Tél[26]. The temperature dependence of the reaction(2)
becomes

K(T ) =




exp

(
− 1

ε((1 − β)T + β)
)

if T > T̄i,

0 if T ≤ T̄i,
(12)

where

ε = RTb

E
, β = Ta

Tb
, T̄i = Ti − Ta

Tb − Ta
.

The boundary conditions to be applied are

T(r, t) = 0, a(r, t) = 1 on r ∈ ∂Ω (t > 0). (13)

The Damköhler number,Da, characterises the ratio between the advective and the chemical time-scales, largeDa
corresponds to slow stirring or equivalently fast chemical reaction and vice versa. The Péclet number,Pe, is a
measure of the relative strength of advective and diffusive transport. We consider only large Péclet numbers, typical
of many applications where advective transport dominates.

3. Numerical results

The reaction–advection–diffusion problem(9), (10) and (13)was integrated on a 1000×1000 square lattice using
operator splitting method combining ADI (alternate–direction–implicit method) for advection and diffusion with
a fourth-order Runge–Kutta for the time integration of the local chemical dynamics. The non-dimensionalisation
(8) fixes the time period and the half-distance between the sinks, both as unity. Consistent with having a strongly
advective flow we took a large value for the Péclet number, keeping it constant atPe = 2000 and, following[23],
we tookε = 1.0, β = 0.1 andT̄i = 0.001. We fix the value of the Lewis number in the range 0.5 up to 10.0 and
then vary the value of the Damköhler number for this particular value ofLe. All our results are for square of side
L = 6.0 ( x =  y = 0.006) and we used a time step t = 0.0005. We note that, varying the Damköhler number
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while keeping the Péclet number fixed, corresponds to varying the chemical reaction rate. This procedure cannot
be achieved by just changing the stirring rate (except in the rather artificial case of changing the diffusivity as well
to keepPe constant).

We find that there are two distinct regimes separated by a critical Damköhler number,Dacrit. In the slow reac-
tion/fast stirring regime (Da < Dacrit) the flame is quenched by the flow and the initial perturbation decays towards
a homogeneous steady state withT = 0 anda = 1 everywhere. WhenDa > Dacrit, the localised perturbation can
persist and propagate in the form of a thin filament. However, this filament cannot fill the whole domain uniformly
because of the continuous outflow of burnt gas and the inflow of fresh reactant. After an initial transient period a
spatially non-uniform periodic state sets in, with the mixing zone partly covered by a complex filamental structure
(steady flame). In our case, the final patterns vary periodically with the period of the flow and effectively take the
same form about each open sink (seeFig. 3).

We start by determining the critical Damköhler number for a given value ofLe. If the numerical simulations are
performed with a fixed initial temperature input, whenDa is close toDacrit, it becomes difficult to generate a steady
flame, since the attraction domain of the non-trivial steady state (steady flame) gets smaller asDacrit is approached
from above. Thus this approach leads to overestimates in the value ofDacrit. To avoid this problem, we started by
first finding a Damköhler number which gave a non-trivial steady state from a simple initial perturbation. When
the steady state had been reached (to well within numerical accuracy), we saved this data and used it as the initial
condition for the next run in which the Damköhler number is slightly decreased. If, in the new run, we did not get
extinction then this procedure is repeated until we did get extinction. The critical Damköhler number could then be
fixed between the values ofDa used for the final two runs.

We illustrate this inFig. 1, where the average temperature〈T 〉 is plotted againstt, for runs withDa around the
critical value forLe = 0.5 and 10.0. Here

〈T 〉(t) = 1

L2

∫∫
Ω

T(x, y, t)dx dy. (14)

In each case for supercritical Damköhler numbers, the mean temperature reaches a stationary state having small
amplitude oscillations around a mean that depends onDa. The oscillations result from the oscillatory nature of the
flow and have periodT/2, that is half of the period of the flow (this is due to the symmetry propertyT(x, y, t) =
T(−x,−y, t + T/2) of the temperature field in the stationary state). When the Damköhler number is below the
critical value the mean temperature decays to zero indicating the extinction of the flame. InFig. 2a, we present the
largest values ofDa for extinction (lower curve) and the lowest values ofDa for a stationary flame (upper curve)
for a range of values of the Lewis numberLe. The critical Damköhler numberDacrit lies between the two curves
plotted inFig. 2a. The increase inDacrit with Le is consistent with our 1D filament model calculations[23], which
show a strong increase inDacrit for relatively small values ofLe but a much slower increase inDacrit for higher
values ofLe.

Starting our computations by using a previously established steady flame solution as initial conditions gives a
critical Damköhler number independent of the form and position of the initial perturbation. Thus a steady flame
will form for any Da > Dacrit provided the initial perturbation is sufficiently large and the system will fail to ignite
if Da < Dacrit. However, a steady flame may fail to ignite even forDa > Dacrit if the initial perturbation is too
small. To illustrate this point, we took an initial temperature input with a fixed amplitude but variable widthδ of
the formT(r, t = 0) = exp(−((x − x0)

2 + (y − y0)
2)/2δ2) and obtained estimates of the minimum Damköhler

number needed to sustain the flame,Damin(δ) (Dacrit ≡ min(Damin(δ))), for different values ofδ (Le = 1.0 and all
parameters are the same as the ones used in the other numerical simulations). With a givenδ, by slowly decreasing
the value ofDa in successive runs, we obtained the smallest value forDa which resulted in a steady flame and the
largest value which led to extinction, represented by full and dotted lines, respectively, inFig. 2b. This measurement
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Fig. 1. Average temperature〈T 〉 (defined by(14)) plotted againstt for: (a) Le = 0.5, (b) Le = 10.0, for values ofDa noted on the figures. In
each casePe = 2000,ε = 1.0,β = 0.1, T̄i = 0.001,L = 6.
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Fig. 2. (a) Dependence of the critical Damköhler number,Dacrit, on the Lewis numberLe. The lower and upper curve represents the largest and
the smallest values of Damköhler numberDa for extinction and for a stationary flame, respectively. (b) Upper and lower bounds for the critical
Damköhler number,Dacrit,δ, calculated for the initial perturbation exp(−((x− x0)
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2)/2δ2) centred in(x0 = 0, y0 = 0) graph (i) and

(x0 = 0, y0 = 1) graph (ii) forLe = 1.0 plotted againstδ.
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Table 1
Critical Damköhler numbers,Dacrit, estimated from the 2D model and obtained for the 1D Lagrangian filament slice model[23] for different
Lewis numbers,Le

Le Dacrit Ratio

2D 1D

0.5 3.5–3.6 6.139 0.578
1.0 3.7–3.8 6.963 0.538
2.0 3.87–3.97 7.711 0.508
3.0 4.0–4.1 8.038 0.503
5.0 4.13–4.23 8.302 0.503
7.0 4.18–4.28 8.401 0.503

10.0 4.2–4.3 8.461 0.502

was repeated for two identical initial heat inputs centred in two different points of the domain,(x0 = 0.0, y0 = 0.0)
and(x0 = 0.0, y0 = 1.0). For sufficiently large radius of the heat input,δ ≥ 0.5 andδ ≥ 0.4, respectively,Damin(δ)

is independent ofδ and is the same asDacrit (seeFig. 2a andTable 1). However, for smaller values ofδ a higher
value ofDa is needed to initiate a steady flame. This value increases considerably for smallδ.

We can compare the values ofDacrit estimated for the present model with those obtained from the 1D filament
model[23]. The results are shown inTable 1, together with the ratio of the two values ofDacrit for a particular
value ofLe. (For the 2D model we took the mid value of the two values obtained from the numerics, the smallest
Da for a stationary flame and the largestDa for extinction.) This ratio gives an estimate of an effective strain rate
resulting from the advection (λeff ≈ 0.5) in the 2D flow, which should be independent ofLe. Though there are some
variations in the ratios for the different Lewis numbers used in the numerical simulations, these are not too large and
suggest that the Lagrangian filament model can provide a reliable guide for the 2D model. We note, that our value
for the effective strain rate (λeff ≈ 0.5) appears to be much smaller than the Lyapunov exponent of the advection
(λ = 2.19) obtained for the same flow parameters in[26]. The main reason for this is likely to be the strong temporal
fluctuations of the strain experienced along the path of a fluid element, whose effect is not equivalent to a constant
averaged strain. Also a basic assumption behind the filament model is that the filaments are long and have little
curvature, that is only a reasonable approximation for the 2D model (seeFig. 3).

In Fig. 3, we give a sequence of grey-level temperature plots forLe = 0.5 andLe = 10.0, in each caseDa = 8.0
(well above the correspondingDacrit). In these figures, the lighter colours correspond to higher temperatures. The
basic development of the temperature field is qualitatively the same in each case. Each sequence starts att = 0
with the initial perturbation in the temperature applied between the two sinks. The first set of plots are at equal time
intervals corresponding to the opening of one sink and the closing of the other. This sequence shows a spiral filament
structure developing around the open sink (2nd plot) resulting from the vortex motion around the open sink. As this
sink closes these higher temperatures are pulled towards the other, now open, sink (3rd plot) initiating a reaction
towards this sink. The spiral temperature filaments that formed around the second sink are then pulled towards the
first as this one opens (4th plot) with relatively high temperatures developing in the region around this sink. This
process continues with spiral temperature filaments forming around the open sink and regions of relatively high
temperatures left near the closed sink until a periodic response is set up, see the 7th, 8th and 9th plots att = 4.0,
5.5 and 8.0 corresponding to alternative openings of the sinks (second sink att = 4.0, 8.0, first att = 5.5).

The final time-periodic temperature field is essentially the same about each sink, the effect of opening one sink
and closing the other is to move the spiral filaments to the region around the open sink and leave a larger region
of high temperatures at the now closed sink, with the final structure reflected about the line joining the sinks. Thus
the effect of the periodic flow is to move the reaction (and regions of high temperature) around the domain with
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Fig. 3. Grey-level temperature plots (the lighter colours correspond to higher temperatures) forDa = 8.0 and (a)Le = 0.5, (b) Le = 10.0. In
each casePe = 2000,ε = 1.0,β = 0.1, T̄i = 0.001,L = 6.
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different regions reacting at different parts of the opening/closing sequence. The temperatures developed locally
are sufficiently high to initiate reactions in the inert regions as they are moved around by the flow.

Differences are seen for low (Fig. 3a) and high (Fig. 3b) Lewis number. In the former cases, the filaments are
relatively thin and are more clearly defined than in the latter case, in which they appear more ‘diffuse’. This could
be expected as highLe corresponds to high thermal diffusivity and the picture is consistent with the profiles seen in
the 1D model[23]. In [23] the width of the temperature profiles increased in extent asLe was increased, for a given
value ofDa. This can also be seen inFig. 4, where we plot the average temperature〈T 〉 againstDa for Le = 0.5 and
Le = 10.0. 〈T 〉 was calculated from the final time-periodic solutions. The figure shows a much more rapid increase
in 〈T 〉 for the higher value ofLe, again consistent with[23], and corresponds to having a thicker filament structure
for largerLe. Our 2D numerical simulations can calculate only the stable solutions. However, the curves plotted in
Fig. 4show strong evidence for the saddle-node bifurcations atDacrit seen in[23].

To characterise the structure of the flame filaments we also calculated the probability density functions (pdf) of
the temperature for the final time-periodic flames. The pdf were computed by first determining the maximum and
minimum temperatures in the steady flame. The range between these two values was divided inton equal parts (bins)
and then, by going through the discretised temperature distribution, the number of temperature values which fall
into a particular bin were counted. These numbers were normalised by dividing by the total number of grid points in
the discretisation. The pdf are presented inFig. 5 for Da = 8.0 andLe = 0.5,1.0,10.0. The largest temperatures,
corresponding to the central parts of the filaments, are smaller than the burnt gas temperature,Tb ≡ 1.0, for the larger
Lewis number, and the maximum temperatures are higher than the burnt gas temperature whenLe < 1, as predicted
by the filament model[23]. The pronounced peak in the pdf atT ≈ 0.85 for Le = 10.0 indicates the presence of a
constant temperature plateau in the centre of the filaments. This has also been found to be a characteristic feature
of the temperature profiles obtained from the filament model for larger Lewis numbers.
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Fig. 4. Average temperature〈T 〉 (as defined in(14)) of the stationary flame structure as a function of Damköhler numberDa for Le = 0.5 and
Le = 10.0.
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Fig. 5. Probability density functions (pdf) of the temperature in the stationary flame forDa = 8.0 andLe = 0.5,1.0,10.0.

We also note that, although larger temperatures are reached for small Lewis numbers, the average temperature
〈T 〉 increases with Lewis number. This can be seen inFig. 6, where we plot〈T 〉 againstLe for Da = 8.0 and
Da = 16.0. This increase in〈T 〉 with Le results from the growth in the spatial extent of the flame filaments, which
appears to be more significant than the change in the maximum temperature reached at the centre of the filaments.

Finally, to investigate the role of chaotic advection in the combustion process we removed the time dependence
of the velocity field by keeping both vortex-sinks open at all times. In this time-independent flow field, the fluid
elements move along the streamlines and there are no chaotic fluid trajectories. The velocity field has a single
hyperbolic fixed point (x = 0, y = 0) which is the only point that never leaves the system. This is the analogue of
the chaotic saddle of the time-dependent flow. Keeping all parameters unchanged andLe = 1.0 we carry out the
same numerical experiments as in the chaotic flow case. We find that there is again a critical Damköhler number,
below which the flame is quenched. The critical value is found to be much higher than in the time-periodic flow,
Dacrit ≈ 135. This is because the rather large eigenvalues of the hyperbolic fixed point(−20.1,20.1) correspond to
a very strong stretching capable of quenching the initial heat input. For supercritical Damköhler numbers, a steady
flame forms along the unstable manifold of the fixed point(0,0) (Fig. 7). The dependence of the mean temperature of
the stationary flame structure,〈T 〉 onDa is plotted inFig. 8and is qualitatively similar to the chaotic case (seeFig. 4).
A striking difference, however, is that the values of〈T 〉 are very much lower. This is a consequence of the much
smaller area of the flame in the absence of the chaotic saddle. This comparison shows that the existence of infinitely
many bounded orbits in the presence of chaotic advection by a time-dependent flow makes the combustion process
significantly more efficient. Note that both bounded sets, the chaotic saddle and the single hyperbolic fixed point of
the time-independent flow, occupy a zero area. This suggests that an indicator of the mixing efficiency relevant for the
combustion process could be the fractal dimension of the chaotic saddle, which is always zero for non-chaotic flows.
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Fig. 6. Average temperature〈T 〉 (as defined in(14)) plotted againstLe for Da = 8.0 andDa = 16.0.

Fig. 7. Grey-level temperature plots (the lighter colours correspond to higher temperatures) in the steady flow regime forDa = 150.0, Le = 1.0,
Pe = 2000,ε = 1.0,β = 0.1, T̄i = 0.001,L = 6.
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Fig. 8. Average temperature〈T 〉 (as defined in(14)) of the stationary flame structure in the steady flow regime as a function of Damköhler
numberDa for Le = 1.0.

4. Conclusions

The 2D model shows that a periodic filament structure (steady flame) can form in an open chaotic flow due to the
interaction between the propagation of a reaction–diffusion front and the stretching due to chaotic advection. We
have identified critical Damköhler numbers for different values of the Lewis number. Values ofDa higher than these
being necessary for fully developed flame propagation. The formation of a flame also depended on the initiation
process. Even at values ofDa larger than the critical values flames could still be extinguished by the flow if the
initial perturbation in the temperature was insufficient. This effect became more noticeable close to criticality. The
flames that do form have a thin filament structure (dependent on the Lewis number) with regions of high temperature
interspersed with regions of lower temperatures (seeFig. 3). The effect of the periodic flow is to move the regions
where the system is reactive and where it is effectively inert around the reactor, turning the reaction on or off at a
particular point as the flow field changes.

The temperature distribution can be interpreted as a direct product of the temperature profile resulting from the
filament model[23] (which represents the flow as a steady strain flow) and the unstable manifold of the chaotic
saddle formed by the set of bounded trajectories of fluid elements[24,26]. These types of structure have been
observed previously for autocatalytic reactions in open chaotic flows[8,29]. In our case, the chaotic saddle is the
support of the flame, in the sense that the bounded trajectories keep the flame in the mixing zone.

It is interesting to note that theattractor of the advection–reaction–diffusion problem—the stationary flame
structure—is centred around an unstable object, therepellor of the advection problem and its unstable manifold.
The explanation of this apparent contradiction lies in the difference between the Lagrangian representation describing
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the motion of fluid elements, and the Eulerian representation used to describe the evolution of the concentration
fields. The stationary (time-periodic) attractor of the temperature distribution, is formed by continuously changing
fluid elements as fresh fuel enters the reaction zone along the stable manifold of the chaotic saddle and burned gases
within the filaments leave the system along the unstable manifold.

The width of the flame filaments decreases for small Damköhler numbers. In case of very thin filaments (Da <
Dacrit), the heat loss becomes important and therefore a stationary flame cannot be sustained. The thermal diffusivity
is proportional with the Lewis number and this explains the increase of the critical Damköhler number with Lewis
number.

Our study of the 2D problem was motivated by our previous work on the 1D Lagrangian filament model[23].
This latter model is very much easier to implement and showed the existence of critical Damköhler numbers and
how these varied withLe, for example. It also gave information as to how the filament structures in temperature and
concentration varied as the values ofDa andLe were changed. What we see in the 2D problem agrees qualitatively,
at least, with what was found in the 1D model. The basic assumption behind this 1D model that the filaments were
thin and essentially straight is not fully realised in the 2D simulations, though it is a better approximation at the
lowerLe values (seeFig. 3a and b). The quantitative agreement between the two models that we tried to obtain was
not especially strong (Table 1), but it does give some expectation that the Lagrangian filament approach should be
a useful indicator as to how general reactive chaotic advection problem behave.

Finally, we note that an advantage of using the 1D filament model is that it gives access to a much greater range
of values for the parametersDa andLe. In most applications the value of Péclet number is relatively large. In
numerical simulations however, large values of Péclet numberPe forces small time t and space steps x, y (we
took x =  y). This becomes more pronounced at the more extreme values forDa or Le. For small values of
Le, for example, the thinness of the filament structure needs very small space steps for its accurate resolution, this
limits the value ofLe to Le ≥ 0.5 for which we could get reliable numerical results within reasonable computational
times.
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