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Synchronization and Oscillator Death in Oscillatory Media with Stirring
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The effect of stirring in an inhomogeneous oscillatory medium is investigated. We show that the
stirring rate can control the macroscopic behavior of the system producing collective oscillations
(synchronization) or complete quenching of the oscillations (oscillator death). We interpret the
homogenization rate due to mixing as a measure of global coupling and compare the phase diagrams
of stirred oscillatory media and of populations of globally coupled oscillators.
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The problem of synchronization of a large population
of nonlinear oscillators has received a great deal of at-
tention lately [1] due to its applications in a variety of
physical [2], chemical [3] and biological systems [4,5],
social phenomena [6], etc. Typically two types of cou-
plings are used to describe the interactions in such sys-
tems: (i) global coupling, where each of the oscillators is
coupled to all the others, or (ii) local coupling, where only
the nearest neighbors are interacting. Global coupling is
relevant for oscillators communicating via visual or
acoustic signals, like flashing fireflies, chirping crickets,
and clapping audiences, and can also be implemented by
electric coupling (see [3] for a recent experiment on
synchronization of globally coupled electrochemical os-
cillators). In these cases the time necessary for informa-
tion to spread over the whole system is much shorter than
the period of the oscillations. In general, global coupling
leads to synchronization when the coupling is sufficiently
strong and the distribution of the natural frequencies is
not too broad.

In a continuous oscillatory medium (e.g., reaction-
diffusion system) the oscillations at different points of
the medium interact through molecular diffusion. Since
the time scale of diffusive transport on macroscopic
length scales (L) is typically much longer than the char-
acteristic time scale of the oscillations, L2=D� Tosc,
diffusion is unable to produce synchronized oscillations
over the whole domain and the only coherent behavior
appears in the form of propagating waves [7,8].

In certain situations the oscillators are embedded into a
moving medium, e.g., in a fluid flow. Examples are oscil-
latory chemical or biological systems in stirred reactors
(Belousov-Zhabotinsky reaction [8], metabolic oscilla-
tions in cell suspensions [5]) or in geophysical context:
oceanic plankton populations [9] and chemical reactions
in the atmosphere [10] transported by large scale geo-
physical flows. However, the effect of stirring in oscilla-
tory media has not yet been investigated. It is often
assumed that strong stirring leads to spatially uniform
concentrations, and thus the temporal evolution, simply
0031-9007=03=91(8)=084101(4)$20.00 
described by a set of ordinary differential equations,
becomes independent of the stirring process. But in
most real systems there are inherent inhomogeneities
imposed by boundary conditions or nonuniformities of
certain external parameters. This can be due to spatial
variations of temperature or illumination in a chemical
reactor, or nonuniform distribution of sources in environ-
mental flows. Therefore perfectly uniform concentrations
are unattainable and stirring effects cannot be ignored.

In this Letter we investigate the behavior of a stirred
oscillatory medium, described by a set of reaction-
advection-diffusion equations

@tCi � v�r; t�rCi � Fi�C1; . . . ; CN; r� �D�Ci; (1)

where Ci�r; t�; i � 1; 2; . . . ; N, are the concentrations of N
interacting species advected by an incompressible fluid
flow v�r; t�. The velocity field is assumed to be time
dependent, which ensures efficient mixing by the chaotic
motion of the fluid elements [11]. The functions Fi de-
scribe the nonlinear interactions between the components
(chemical reactions, evolution of biological populations,
etc.) such that the local dynamics has a stable limit cycle
in each point of the medium

_CC i � Fi�C1; . . . ; CN; r� ! Ci�t� Tr; r� � Ci�t; r�: (2)

The explicit dependence of the interaction terms on the
spatial coordinate accounts for inhomogeneities of the
medium. We consider the simplest form of inhomogene-
ity, when the medium is composed by identical oscillators
except for their frequencies, that is nonuniform in space

Fi�C1; . . . ; CN; r� � �1� 
f�r�	F0
i�C1; . . . ; CN�; (3)

where f�r� and 
 describe the shape and the amplitude of
the inhomogeneity. We assume, for simplicity, that
hf�r�i � 0 and hf2�r�i � 1, where h i represents averaging
over the domain.

In the numerical simulations stirring is modeled by a
sinusoidal shear flow with alternating directions
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vx � �A=T� sin�2�y��n�; vy � 0 for t 2 �nT; �n� 1=2�T�;

vx � 0; vy � �A=T� sin�2�x��n� for t 2 ��n� 1=2�T; �n� 1�T�
(4)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

20 25 30 35 40

<
C

1>

t

ν=0.1 ν=0.2 ν=0.4 ν=1.5

FIG. 1. Time dependence of the mean concentration hC1i for
different stirring rates (�) and 
 � 0:2.
(A � 1:4), advecting chaotically all fluid particles within
the unit square with doubly periodic boundary conditions.
The phases �n are chosen at random in each half period.
This ensures that there are no transport barriers and all
fluid elements can approach any other fluid element in the
domain. We note that chaotic advection is a generic fea-
ture of simple time-dependent flows; therefore the results
are expected to be characteristic of a broad range of fluid
flows. We define the stirring rate as � � 1=T, which is
controlled by the period of the flow.

For the oscillatory dynamics the well known Lengyel-
Epstein model of the chlorine-iodine-malonic acid reac-
tion [8] is considered

F0
1�C1; C2� � 1� C1 � 4C1C2=�b� C2

1�;

F0
2�C1; C2� � a�C1 � C1C2=�b� C2

1�	:
(5)

The chemical dynamics has a uniform steady state (C�
1 �

0:2; C�
2 � b� 0:04), which is unstable for the parameter

values used, b � 0:005, a � 0:375, and the only attractor
is a limit cycle. The shape of the inhomogeneity is chosen
to be f�x; y� �

���
2

p
sin�2��x� y�	. The system (3)–(5) is

investigated for different stirring rates � and degrees of
inhomogeneity 
. (D � 10�4 in all simulations.)

Let us first discuss some special cases. For nonreactive
components [F�C1; . . . ; CN� � 0] an initially nonuniform
concentration is homogenized by mixing. In flows with
chaotic advection the decay of the spatial fluctuations is
exponential in time [12]

h�C� hCi�2i � exp��2�t�; (6)

and for long times the spatial structure is dominated
by the eigenmode of the advection-diffusion opera-
tor Lmix � D�� v � r with the largest (least negative)
eigenvalue.

C�r; t� ! hC�r;0�i� e��t�1; Lmix�i ���i�i: (7)

Strictly speaking the eigenmodes have a temporal depen-
dence following the evolution of the velocity field, but
they are stationary at least in a statistical sense.

In a uniform oscillatory medium, 
� 0, the advection-
reaction-diffusion problem has a spatially uniform oscil-
latory solution. This is stable to spatially nonuniform
perturbations, and numerical simulations suggest that it
is globally attracting. The decay of the spatial fluctuations
is controlled by the chaotic mixing, as indicated by the
exponential decay of the variance with the same exponent
as for the nonreactive case. The only difference is that
there are oscillations superposed due to the oscillatory
nature of the chemical dynamics, i.e., h�C� hCi�2i �
h�t� exp��2�t� where h�t� is periodic with the period of
the oscillations of the mean field.
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Let us now consider a fixed amplitude of the inhomo-
geneity and vary the stirring rate.When stirring is strong,
the mean concentration has an oscillatory time depen-
dence indicating synchronization (Fig. 1), but unlike in
the case of the homogeneous medium, the spatial fluctua-
tions do not disappear completely, since there is no spa-
tially uniform oscillatory solution for 
 > 0. For very
fast stirring the spatial fluctuations are weak and the os-
cillations of the mean concentrations are almost the same
as for a uniform medium. The amplitude of the oscilla-
tions of the mean field decreases with the stirring rate,
while the frequency remains the same. On longer time
scales, there is also a weak irregular modulation of the
amplitude that becomes more pronounced for slow stir-
ring. When the stirring rate falls below a certain critical
value, the synchronized oscillations disappear, and the
mean concentration is almost constant apart from small
irregular fluctuations.

Two pairs of snapshots of the concentration field
C1�x; y�, for the synchronized (a) and unsynchronized
(b) cases, are shown in Fig. 2. The complex spatial struc-
ture, characteristic of chaotic mixing, is combined with a
coherent time evolution for supercritical stirring, while in
the slow stirring case the snapshots corresponding to
different times are statistically equivalent. The difference
between the two regimes is also clearly visible on the
projections of the concentration field onto the chemical
phase plane C1 � C2 (Fig. 3). When the stirring is strong,
the projected concentration fields appear as a small clump
moving around the limit cycle of a single oscillator, while
in the unsynchronized regime they extend over a large
domain that remains almost unchanged in time.

To characterize the degree of synchronization we cal-
culate the standard deviation in time of the spatially
averaged concentrations

R �

���������������������������������������������������������������������
1

�

Z t��

t
hCi2dt0 �

�
1

�

Z t��

t
hCidt0

�
2

s
; (8)
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FIG. 3. Projection of the concentration field C1�x; y� on the
chemical phase plane C1 � C2 in the synchronized (a) and
nonsynchronized (b) cases, 
 � 0:2. The limit cycle for a
single oscillator is also shown for reference.
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FIG. 4. The normalized order parameter as a function of stir-
ring rate for different degrees of nonuniformity of the medium.

FIG. 2. Snapshots of the concentration field C1�x; y� in the
synchronized [(a) � � 0:4] and the nonsynchronized [(b) � �
0:167] regimes (
 � 0:2).
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for different stirring rates (Fig. 4). Large values of R
indicate synchronization. R��; 
� can be normalized by
dividing it with the same quantity obtained for the
uniform oscillating medium, R0 � R�
 � 0� (0<R=
R0 < 1). The order parameter R=R0 increases sharply
above a critical stirring rate. In the unsynchronized re-
gime, below the critical stirring rate, the order parameter
is small. We believe that in this regime R tends to zero in
the D! 0 limit, which is analogous to the limit of
infinitely many oscillators in the case of global coupling.

The critical stirring rate depends on 
, and faster
stirring is needed for synchronization when the medium
has a larger spread of the local frequencies. When 
 is
sufficiently large, a new regime appears between the
synchronized and unsynchronized states. At intermediate
stirring rates the oscillations of the mean field disappear
completely (R � 0) and the concentrations become uni-
form in space. This ‘‘oscillator death’’ state corresponds
to the unstable equilibrium of the homogeneous chemical
system, C�

i . Thus, stirring in the presence of inhomoge-
neity can stabilize the unstable steady state of the chemi-
cal dynamics and suppress the oscillations. This results
from the competition between the inhomogeneity of the
medium generating nonuniform concentrations and mix-
ing that tends to reduce the spatial fluctuations.

Similar regimes have been observed in ensembles of
globally coupled oscillators [13,14]. In the stirred media
due to the relative displacement of different parts of the
medium the neighborhood of each point is changing in
time; thus regions that are initially far from each other
can interact at a later time. This defines a characteristic
time scale of mixing as the time needed to bring pairs of
points, initially separated by a distance comparable with
the size of the domain, sufficiently close so that they can
interact by diffusion.When this time is much shorter than
the period of the oscillations, there is an effective global
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interaction in the moving medium. Thus the character and
strength of the coupling can be controlled by the stirring
rate. An analogous situation occurs in an ensemble of
oscillators coupled through a network in which each
node has a small number of connections that are changing
in time in a random fashion.

The dynamics of globally coupled oscillators in the
continuum limit is described by

@tCi � �1� 
f�r�	Fi�C1; . . . ; CN� � �g�hCii � Ci�: (9)

Similar to the mixed system, in the absence of oscilla-
tions [Fi�C1; . . . ; CN� � 0], global coupling leads to an
exponential decay of the concentration fluctuations,
Var�C� � exp��2�gt�. Based on this analogy, we inter-
pret the homogenization rate in the stirred system, �, as a
084101-3
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FIG. 5. Phase diagram of the oscillatory medium with stir-
ring (a) and global coupling (b). The symbols represent syn-
chronization (�), oscillator death (*), and no synchronization
(�). The dashed line is the phase boundary based on Eq. (10).
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measure of the coupling strength resulting from the com-
bined effects of advection and diffusion.

In Fig. 5 we present phase diagrams, for the cases of
both mixing and global coupling. The homogenization
rate, �, corresponding to different stirring rates, has been
obtained numerically by measuring the decay rate of the
variance of the concentration field for a nonreactive
component. In the fast stirring limit (�L2=D� 1) the
homogenization rate tends to be proportional with the
stirring rate. The two phase diagrams have a qualitatively
similar structure. Both strong coupling and fast stirring
leads to synchronization or oscillator death when the
inhomogeneity of the medium is strong. Slow stirring is
analogous to weak coupling as shown by the lack of
synchronization in this regime.

For globally coupled oscillators an approximation for
the boundary between the synchronization and oscillator
death phase has been found recently in [14]

�c�
� � #��!=#�2 � 1	
2; (10)

where # and ! are the real and complex parts of the
eigenvalue of the unstable steady state C�. The above
result is valid when !� #, in our case # � 0:222 and
! � 2:878. We find that in the case of global coupling the
boundary (10) agrees well with the numerical results. For
the mixed system, however, the same boundary is shifted
toward lower stirring rates/stronger inhomogeneity.

This is not surprising since the advection-diffusion
operator has a complex structure and is not simply equiva-
lent to a linear relaxation to the mean concentration.
Although the long time decay of the fluctuations is domi-
nated by the eigenmode with the largest eigenvalue,
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� � �1, by replacing mixing with global coupling corre-
sponding to the most slowly decaying eigenmode we
underestimate the strength of the coupling due to mixing.
This may be the explanation for the difference between
the two diagrams in Fig. 5. Another origin of the devia-
tion could be that in the system with mixing fluid parcels
move during a period of the flow, and therefore the
average value of the shape function f�x; y� calculated
along fluid trajectories has a smaller variance than in a
motionless medium, resulting in a weaker effective in-
homogeneity of the medium.

In summary, we have shown that oscillatory media
with stirring exhibit qualitatively similar behavior to
populations of globally coupled oscillators, and the effec-
tive coupling strength is controlled by the stirring rate.
Changes in the stirring rate can lead to transitions to
synchronization or oscillator death. This may explain
some of the stirring effects observed in laboratory experi-
ments [15] and could also be exploited for controlling the
dynamics of oscillatory systems. Similar behavior may
also arise in systems where the local dynamics is chaotic.

We thank Silvia De Monte, Peter H. Haynes, and
Francesco d’Ovidio for useful discussions.
[1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchro-
nization: A Universal Concept in Nonlinear Science
(Cambridge University Press, Cambridge, U.K., 2001);
S. H. Strogatz, Physica (Amsterdam) 143D, 1 (2000).

[2] K. Wiesenfeld, P. Colet, and S. H. Strogatz, Phys. Rev.
Lett. 76, 404 (1996).

[3] I. Z. Kiss, Y. Zhai, and J. L. Hudson, Science 296, 1676
(2002).

[4] A.T. Winfree, The Geometry of Biological Time
(Springer, New York, 2000).

[5] S. Dano, P. G. Sorensen, and F. Hyne, Nature (London)
402, 320 (1999).
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