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Noise-Sustained Coherent Oscillation of Excitable Media in a Chaotic Flow
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Constructive effects of noise in spatially extended systems have been well studied in static reaction-
diffusion media. We study a noisy two-dimensional Fitz Hugh–Nagumo excitable model under the
stirring of a chaotic flow. We find a regime where a noisy excitation can induce a coherent global
excitation of the medium and a noise-sustained oscillation. Outside this regime, noisy excitation is
either diluted into homogeneous background by strong stirring or develops into noncoherent patterns at
weak stirring. These results explain some experimental findings of stirring effects in chemical reactions
and are relevant for understanding the effects of natural variability in oceanic plankton bloom.
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a two-dimensional Fitz Hugh–Nagumo model described L2=�DT� � 1. The parameters used in our simulations
Constructive effects of noise in nonlinear systems,
such as stochastic resonance (SR) [1], coherence reso-
nance (CR) [2], noise-induced transitions [3], and
noise-enhanced stability [4] have been a subject of great
interest. Recently, the attention has been shifted to
spatially extended systems [5–16]. Effects such as
array-enhanced SR [8], array-enhanced CR [9], noise-
enhanced signal propagation [10], noise-enhanced
synchronization [11], or array-enhanced frequency and
phase locking to weak signals [12] have been observed. In
subexcitable reaction-diffusion media, noise-sustained
wave propagation [13] or global oscillation [14] occurs
due to multiplicative noise-induced transitions of the
system to the excitable or the oscillatory regime [15].
Double noise effects have been demonstrated in systems
subjected to both multiplicative and additive noises [16].
In these studies, the media are static, and the constructive
effects are a consequence of the interplay between local
excitation (switching) due to noise perturbation and
propagation of excitation (wave) due to diffusion.

In nature and many engineering examples, the media,
however, are not necessarily static, but quite on the con-
trary, may be subject to a motion, e.g., when stirred by a
flow. This occurs especially in chemical reactions in a
fluid environment [17], conversion of pollutants in atmos-
pheric flows, or bloom of plankton in oceanic currents.
Mixing due to chaotic advection [18] of the flow has
strong influences on the pattern formation of excitable
media [19]. Chaotic stirring and excitability are two
features relevant to bloom of plankton, e.g., in ocean
fertilization experiments [20], which can be described
by an initial value problem of an excitable model sub-
jected to turbulent ocean currents [21].

Noise, such as that from the natural variability, is
inevitably present in this type of system, but its effects
have not yet been addressed. In this Letter, we investigate
the interplay among noise, excitability, diffusion, and
mixing in excitable media advected by a chaotic flow, in
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by the reaction-advection-diffusion equations:
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where a is the excitation threshold, D is the diffusion
constant, and � � 1 is the time scale of the slow variable
C2. The spatially homogeneous system has a stable fixed
point at �C1; C2� � �0; 0�, while it generates a large ex-
cursion to a maximum C1 	 1 when perturbed over
the threshold a. The noise ��r; t� is Gaussian white
in space and time, satisfying h��r; t���r1; t1�i � 2�	�r�
r1�	�t� t1�, with � being its intensity.

The flow is assumed to be imposed externally, with a
velocity field v�r; t� independent of the reaction:
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where � is the Heaviside step function. This is a well-
known standard model for mixing by chaotic advection
[18]. The random phase �i in each half period makes the
velocity field aperiodic to avoid transport barriers typi-
cally present in time-periodic flows [18]. Under the ad-
vection of such a flow, the fluid elements separate
exponentially at a rate proportional to the stirring rate
� � 1=T [19]. The results below are not specific to this
flow but should be characteristic to a class of unsteady
laminar flows.

We consider the system on the unit square (L � 1) with
doubly periodic boundaries in the weak diffusion case
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FIG. 1. Typical patterns of C1�x; y� of the motionless [(a) v �
0] and stirred [(b) � � 0:08� media, in the presence of noise
with an intensity � � 24 � 10�10.
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FIG. 2. Time series of mean value hC1i (solid lines) and
standard deviation �C (dotted lines) of the concentration
C1�x; y� at various noise intensities � � 2� � 10�10: (a) � �
4:0, (b) � � 5:0, (c) � � 6:0, (d) � � 7:3 and (e) � � 9:0. The
stirring rate of the flow is � � 0:08.

FIG. 3. Development of filaments and formation of a coherent
global excitation for � � 5. The stirring rate � � 0:08.
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are a � 0:25, D � 10�5, � � 10�3. The system is inte-
grated initially from the homogeneous steady state (HSS)
�C1; C2� � �0; 0�, using a semi-Lagrangian scheme for
the deterministic part; then an independent noise term



�����������
2��t

p
=�x��ij, where �ij is a random number from the

normal distribution N�0; 1�, is added to C2�i; j; t� at each
grid point �i; j� [5]. We fix �t � 0:05 and �x � L=600.
We study the system behavior with respect to the
noise intensity � � 2� � 10�10 and the stirring rate �
of the flow.

For the weak diffusion D considered here, noise alone
cannot generate large-scale coherent behavior in the mo-
tionless media �v � 0). Many noise-induced excitation
centers diffuse to form random patterns of small excited
patches, as seen by a typical snapshot at a noise level with
� � 4:0 [Fig. 1(a)]. The number of excitation centers
increases at larger noise intensities; however, the patches
do not grow to a scale comparable to the domain size L2.
For the system subjected to the stirring of the flow (� �
0:08), the same noise intensity with � � 4:0 cannot gen-
erate visible excitation patches [Fig. 1(b)]. Mixing of the
flow tends to spread and dilute small excited centers
before they can grow through diffusion as in the motion-
less media. The domain is almost uniform around HSS, as
seen by a mean concentration hC1i � 10�3 in Fig. 2(a).

For a larger noise with � > 4:0, excitation of the media
occurs after a period of time. hC1i is now composed of a
train of large spikes with almost periodic intervals TI, as
seen in Fig. 2(b) for � � 5:0. The large spikes of hC1i 	 1
correspond to a coherent global excitation (CGE) of the
whole domain, such that at all spatial points C1�x; y� 	 1,
through the development of filaments. The typical process
is shown in Fig. 3. At some moment, a strong enough local
excitation survives the stirring. Instead of being diluted
into the background, it is elongated along the trajectory of
the flow and develops into filaments with a characteristic
width resulting from a competition between the stirring
and the diffusion [19]. The filaments become denser and
denser to fill the whole domain. Later on, the whole
domain starts to relax synchronously back to a close
vicinity of HSS. The process repeats to generate a noise-
sustained coherent oscillation of the mean field hC1i.

To measure the degree of synchronization of the do-
main, we calculate the standard deviation �C of C1 over
the domain as a function of time:
150601-2
�C�t� � 
hC1�r; t�2i � hC1�r; t�i2�1=2: (5)

In Fig. 2(b) (� � 5:0), it is seen that �C increases when
the filaments grow till they fill the whole domain, where
�C drops quickly to a quite small value �C � 10�2 cor-
responding to a CGE of the whole domain. Such a well-
expressed synchronization is lost temporally when parts
of the domain change to C1 	 �0:25 quickly, while the
others still have C1 	 0:75. As a result, �C obtains a
smaller peak at a rapid decrease of hC1i. Note that in
the noise-free media starting from a strong enough initial
perturbation [19], �C also displays the first peak corre-
sponding to the growth of the filaments; however, it
decays monotonously to zero without exhibiting a second
smaller peak. This noise-induced temporal inhomogene-
ity is homogenized quickly by stirring, and the synchro-
nization is restored during the slow relaxation phase so
that the whole domain approaches simultaneously back to
150601-2



FIG. 4. Persistent noncoherent patterns at a large noise � �
9:0. The stirring rate � � 0:08.
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FIG. 5. Variance of hC1i [(a),(c)] and mean interspike interval
TI [(b),(d)] as a function of the noise intensity � (left: � �
0:08) and the stirring rate � (right: � � 25 � 10�10).
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FIG. 6. Phase diagram of the system in the parameter space
��; ��. The symbols represent homogenization (�), coherent
global excitation (�), and noncoherent excitation (�).
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a close neighborhood of HSS to allow another round of
excitation. At a larger noise, e.g., � � 6 [Fig. 2(c)], a
strong enough local excitation can develop within a
shorter time, resulting in an earlier global excitation
and shorter intervals TI between the spikes of hC1i.

However, for an even larger noise level, e.g., � � 7:3
[Fig. 2(d)], after the first coherent global excitation from
the initial HSS, not all the points of the domain relax
simultaneously back to the close vicinity of the fixed
point (0; 0). A small part of them become excited at early
times before coming close to the fixed point. Later on, the
filaments developed from excitations at different times
cannot merge completely to form a fully CGE. The fol-
lowed spikes are clearly lower than the first one, and the
corresponding �C is clearly far away from zero.

With increasing noise intensity, more and more parts of
the domain can be excited before coming back to the
close vicinity of the fixed point. The coherence is lost,
and there are no longer pronounced and large spikes in
hC1i after the first one. At a rather strong intensity, e.g.,
� � 9:0 [Fig. 2(e)], the whole domain does not achieve a
CGE even from the initial HSS. The synchronization is
totally destroyed and �C never comes close to zero again.
The corresponding noncoherent patterns (Fig. 4) are
composed of many random filamentlike strips.

The above three regimes, i.e., homogenization, coher-
ent global excitation, and noncoherent excitation, can be
manifested by the variance of the oscillation of hC1i:

Var�hC1i� � hhC1i
2it � hhC1ii

2
t ; (6)

where h it denotes average over time after a transient t �
500. As shown in Fig. 5(a) for fixed � � 0:08, Var�hC1i�
experiences an abrupt increase around � � 4:0, and it
keeps almost flat in the range of � 2 �4:0; 7:0� for the
CGE. The interspike interval TI is the sum of the fixed
duration of a single excitation cycle and the time neces-
sary to produce a surviving excitation center. Close to the
threshold, the stochastic waiting time is much longer and
irregular, and therefore TI also fluctuates. Otherwise the
deterministic part dominates and there is a more regular
(although not perfect) periodicity. The mean TI decreases
with increasing noise intensity � till too large noise
prevents a CGE [Fig. 5(b)]. This behavior is similar to
CR in zero-dimensional excitable elements [2] and in
coupled arrays of such elements [9,11], where noise gen-
erates the most regular spike trains at some intermediate
intensities.
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Figure 6 shows the three regimes in the parameter
space ��; ��. When the noise is rather small �� & 2:0), a
weak stirring (�� 0:02) already induces homogenization
of the media. At even weaker stirring rates, noise excita-
tion simply develops into noncoherent excitation, because
such stirring rates do not support CGE even in noise-free
media with strong enough initial perturbations [19]. For
stronger noise levels, the regime of CGE appears. In this
regime, noise is strong enough to induce a sufficiently
large excitation center, but importantly, it does not affect
much the growth of the filaments to form a CGE and then
synchronized relaxation back to HSS for sustained coher-
ent oscillations of the media. When the stirring rate is
above the upper boundary, all noisy excitations are di-
luted and the domain is homogenized; while below the
lower boundary weaker mixing is not enough to maintain
a synchronized relaxation to HSS, resulting in a non-
coherent excitation. Figures 5(c) and 5(d) depict the tran-
sitions via the varying stirring rate � at the fixed noise
level � � 5:0. The interspike interval of hC1i increases on
average and becomes clearly erratic when � approaches
the upper boundary of the CGE regime.

The mechanism underlying the CGE is the nonuniform
sensitivity of the system to noisy perturbations. The
dynamics of CGE can be divided into a stochastic and a
deterministic component. There exists a minimal charac-
teristic length scale l0 �

�������������
�D=��

p
, over which there is fast
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homogenization by mixing. A region of size l0 is homo-
genized by diffusion on a time scale �� l20=D� 1=�. The
noise level controls the density of superthreshold pertur-
bations received within a patch of size l0 during the
time �. If the noise is not strong enough, the density of
points with superthreshold perturbations is too small,
and the patch becomes subthreshold after the homogeni-
zation and it decays. If the noise level is sufficiently large,
then the amount of perturbations within the patch during
the time � is sufficient to stay above the threshold after
the homogenization, forming a survived excitation center.
Afterwards, the dynamics becomes essentially determin-
istic as it is dominated by the excitable reaction as in the
noise-free media. At a stronger stirring rate �, a larger
noise level is required to generate denser and more fre-
quent superthreshold perturbations, so that sufficient si-
multaneous threshold crossings occur within a smaller
patch of l0 over a shorter time � to form an excitation
center for CGE. A rather sharp transition (upper bound-
ary in Fig. 6) is thus observed as a result of the homoge-
nization of the perturbations over the finite length
scale l0. The coherence is lost when the dynamics is
strongly influenced by noise during the relaxation period.

These results provide an explanation for experimen-
tally observed stirring effects in the excitable Belousov-
Zhabotinsky reaction [22]. Fluctuations of local reaction
rates or heat release can induce oscillations of larger and
more erratic periods with increasing stirring rate, which
become quenched at strong stirring rates [22].

Noisy fluctuations are key elements in the dynamics of
ecosystems [23,24]. The birth and death processes of
individuals are intrinsically stochastic. The interaction
of oceanic zooplankton with fish, which are far from
being uniformly distributed, also introduces randomness
[24]. Recently, Vilar et al. showed that fluctuations and
turbulent stirring in the standard prey-predator models,
around a stable state, are able to account for field obser-
vation of oceanic plankton patchiness at mesoscales [24].
This regime corresponds to the vicinity of HSS of Eqs. (1)
and (2). The excitability is more relevant for plankton
bloom situations [21,25] (mainly in spring and summer)
similar to that induced by the ocean fertilization experi-
ments [20]. Furthermore, several parameters can change
irregularly in space and time. One of them is the depth of
the mixed layer. Within this layer there is strong vertical
mixing; therefore, its depth controls the average amount
of light received and thus the growth rate of the phyto-
plankton. Another parameter crucial for the phytoplank-
ton productivity is the iron concentration, so that adding
small amounts of iron to the surface of the ocean can
induce a mesoscale bloom [20]. Elevated iron concentra-
tions have been observed in surface waters of the equa-
torial Pacific after rain [26]. There are also important
regular changes of the parameters associated with the
seasonal cycle. The combined effects of the fluctuations
and the regular forcing may lead to a resonant response of
150601-4
the excitable media in the flow, which is under investiga-
tion in the context of oceanic plankton bloom.

This work was supported by the Humboldt Foundation,
SFB 555, and ORS and University of Leeds.
[1] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14, L453
(1981); L. Gammaitoni et al., Rev. Mod. Phys. 70, 223
(1998).

[2] G. Hu et al., Phys. Rev. Lett. 71, 807 (1993); A.S.
Pikovsky and J. Kurths, ibid. 78, 775 (1997).

[3] W. Horsthemke and R. Lefever, Noise-Induced
Transitions (Springer, Berlin, 1984).

[4] N.V. Agudov and B. Spagnolo, Phys. Rev. E 64,
035102(R) (2001).

[5] J. Garcia-Ojalvo and J. M. Sancho, Noise in Spatially
Extended Systems (Springer, New York, 1999).

[6] P. Jung and G. Mayer-Kress, Phys. Rev. Lett. 74, 2130
(1995); F. Marchesoni et al., ibid. 76, 2609 (1996);
J. M. G. Vilar and J. M. Rubı́, ibid. 78, 2886 (1997).

[7] A. Ganopolski and S. Rahmstorf, Phys. Rev. Lett. 88,
038501 (2002).

[8] J. F. Lindner et al., Phys. Rev. Lett. 75 , 3 (1995).
[9] B. Hu and C. S. Zhou, Phys. Rev. E 61, 1001R (2000);

Y. Jiang and H. Xin, ibid. 62, 1846 (2000); C. S. Zhou,
J. Kurths, and B. Hu, Phys. Rev. Lett. 87, 098101 (2001).

[10] J. F. Lindner et al., Phys. Rev. Lett. 81, 5048 (1998).
[11] A. Neiman et al., Phys. Rev. Lett. 83, 4896 (1999).
[12] C. S. Zhou, J. Kurths, and B. Hu, Phys. Rev. E 67,

030101R (2003).
[13] S. Kádár, J. Wang, and K. Showalter, Nature (London)

391, 770 (1998); J. Wang et al., Phys. Rev. Lett. 82, 855
(1999); L. Q. Zhou, X. Jia, and Q. Ouyang, ibid. 88,
138301 (2002); Z. Hou and H. Xin, ibid. 89, 280601
(2002).

[14] H. Hempel et al., Phys. Rev. Lett. 82, 3713 (1999).
[15] S. Alonso et al., Phys. Rev. Lett. 87, 078302 (2001).
[16] A. A. Zaikin et al., Phys. Rev. Lett. 85, 227 (2000).
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