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In a recent paper [20], we proposed and analyzed a compartmental ODE-based model describing the
dynamics of an infectious disease where the presence of the pathogen also triggers the diffusion of infor-
mation about the disease. In this paper, we extend this previous work by presenting results based on
pairwise and simulation models that are better suited for capturing the population contact structure at
a local level. We use the pairwise model to examine the potential of different information generating
mechanisms and routes of information transmission to stop disease spread or to minimize the impact
of an epidemic. The individual-based simulation is used to better differentiate between the networks
of disease and information transmission and to investigate the impact of different basic network topol-
ogies and network overlap on epidemic dynamics. The paper concludes with an individual-based semi-
analytic calculation of R0 at the non-trivial disease free equilibrium.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

As is evident all around us, human populations affected by the
presence of an infectious disease will rarely remain passive. From
leaflets found in a local clinic to community workshops and all
the way up to national and global multimedia campaigns, concerted
efforts are put into effect with the goal of changing peoples’ behav-
ior in the presence of an infectious pathogen [9,12]. The motivation
for the above is that people, by virtue of the information content of
these messages, will change their attitudes and actions to reduce
their chances of becoming infected, spreading the disease further
or experiencing prolonged periods of medical treatment. Often
the messages in these campaigns are targeted to a particular geo-
graphic, sociodemographic (e.g. gender, age, ethnicity, income) or
psychographic (e.g. those that are more likely to engage in risky
behavior) sub-audience as many studies have found that the pres-
ence of a disease often correlates with an individuals’ association
with these segments [31]. When pathogens are known to spread
through relatively well defined networks, as in the case of sexually
transmitted diseases (STD), contact tracing data collected at clinics
can be used to identify individuals with a prominent structural role
in the network (e.g. hubs or bridges) who can then be approached or
screened preferentially. Likewise individuals that are probable to
influence opinion can be approached and seeded with information
ll rights reserved.
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in the hope that they will diffuse this through their social network
[24,31].

Besides such organized campaigns, observations suggest that
people’s decision on whether to adopt a change in behavior is
based or influenced by others in their personal network of friends,
colleagues and acquaintances [22,31]. This word-of-mouth effect
has been observed and utilized in electronic marketing [13,23,27]
and when modelling the diffusion of innovations [19], a paradigm
that attempts to capture how people transition through the adop-
tion process of a new product from non-aware to adopter (see [25]
for a comprehensive review). Personal communications may also
occur, although perhaps at a lower rate, between individuals that
are not members of each others social network but come into con-
tact rather infrequently and unpredictably. For example, an indi-
vidual might unintentionally hear a conversation between two
strangers on a bus. Such a ‘mean-field’ type of person to person
transmission has been recently presented in [6] to model the trans-
mission of infectious diseases between randomly and infrequently
meeting individuals. Intuitively, such mean-field infections may be
more frequent when considering an airborne pathogen than in
STD’s where the contacts are well determined and identifiable
[15,29]. Besides media, social and random contacts a fourth route
to awareness is an obvious one: being infected with a pathogen
an individual will take measures to avoid infecting those in his/
her neighborhood.

A major motivation for the incorporation of behavioral change
models in infectious disease studies was the AIDS epidemic from
the early 1980’s and onwards. The main driver for this was the
routes of information transmission: Implications for epidemic dynamics,
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realization that the growth of STD’s, including AIDS/HIV, could be
understood as a consequence of lifestyles choices and subjective
risk perception motivated by individual attitudes, norms and be-
liefs [3,4].Recent behavioral work on HIV has concentrated on the
growth of the epidemic in Africa which has been explosive
[14,17,30]. In the past few years a number of compartmental epi-
demiological models have been proposed that incorporate various
interactions of the diffusion of an infectious disease and human
behavioral response. Broadly speaking most of the research can
be classified into one of two categories. In the first class is models
that deal with vaccine-preventable diseases (see [1,2,5,26] and ref-
erences therein). In this case a natural question is whether (and to
what extent) individuals’ attitudes to vaccination can affect the
dynamics of the disease. In cases of voluntarily vaccination, with-
out further incentives, as vaccination coverage increases the risk
of infection decreases due to herd immunity. At the same time
any, real or imaginary, risks from the vaccine itself remain con-
stant. This effect may motivate individuals to act in self-interest
and avoid vaccination even if the risks of the vaccine are very
small. Consequently disease eradication may become very diffi-
cult[26]. The second class of models deal with behavioral change
in response to an epidemic outbreak [8,10,11,20,21,28]. Our model
belongs in this class. Here individuals may alter the course of an
epidemic by taking disease specific risk-reducing measures such
as washing hands or using condoms. In modeling terms this is usu-
ally represented as subdivisions of a population into classes differ-
entiated by degrees of risk exposure. It is beyond the scope of this
paper to offer a review of this body of work but for the interested
reader a comprehensive review can be found in [12]. Here the
authors propose a classification based on the following criteria:
the source of information - global or local, the type of information -
prevalence or belief -based and finally the effect of information.
The type of information is a classification meant to delineate
whether behavioral change occurs due to the disease prevalence
(prevalence-based) or due to the diffusion of some other behav-
ioral trait that may be unrelated to the current prevalence (be-
lief-based). The authors present as an example of this the
decision of whether to vaccinate a child. Here, a conclusion might
be reached without the disease in question being currently preva-
lent but based on a subjective perception of risks associated with
vaccination. Finally the effect of information classifies how the pres-
ence of information alters an individuals exposure to the risk of
infection. Possession of disease-related information might result
in individuals changing their disease state via vaccination that
can eliminate susceptibility, changing or influencing their contact
network or taking measures to reduce the chances of acquiring
or passing on infection. In light of this classification, we will pres-
ent a model which encompasses both prevalence and belief-based
types of information, local and global sources as well as the mean-
field and self-induced avenues for information generation and
transmission.

This paper builds on our previous work [20] where we proposed
a compartmental model that coupled a simple SITS model with the
diffusion of information generated by the presence of the disease.
Here, we extend this model by introducing additional sources
and routes of information transmission. We also provide a more
fine-grained pairwise description of the problem along with an
individual-based computational representation. The paper is orga-
nized as follows. In Section 2 the disease and information trans-
mission models are introduced. These will serve as a basis for the
pairwise model presented in the first part of Section 3 and the indi-
vidual-based simulation model discussed in the second part. The
pairwise model will be used to assess the potential of various
routes of information generation and transmission to reduce the
infectious prevalence as well as the benefits of using various com-
binations of these. In the second part of Section 3, simulations are
Please cite this article in press as: V. Hatzopoulos et al., Multiple sources and
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used to increase the freedom of coupling or decoupling routes of
disease and information transmission and to investigate the effect
of network overlap for some simple network topologies. Finally, in
Section 4, we present an individual-based analytic R0 calculation at
the non-trivial disease free steady state (DFSS) with further discus-
sion in Section 5.
2. Model

Following on from [20], the population is divided into five dif-
ferent classes that specify the individual’s status with respect to
disease and information. These are: susceptible non-responsive
(Snr), susceptible responsive (Sr), infected non-responsive (Inr), in-
fected responsive (Ir) and in treatment (T). The term responsive-
ness emphasizes that the willingness to act or respond to the
available information is key in trying to avoid infection or halting
further spread. The important ingredients of the model relate to
the generation and transmission of information as well as the ben-
efits of possessing and responding to information. In the current
model, information or responsiveness about the disease is gener-
ated in three ways: (a) Inr ? Ir as a result of symptoms, (b) Ix ? T,
where x 2 {nr,r}, as a result of being diagnosed and moving to the
treatment class and (c) Xnr ? Xr, where X 2 {S, I} as a result of
global information transmission. While the first two are intuitive,
the latter is used to model the effect of mass-media campaigns
which act as a single-source of information with its strength
and duration often linked to the prevalence of infection in the
population. Information transmission is possible in multiple ways
and here we account for two: (a) locally or individual to individ-
ual and (b) mean-field. While disease dissemination locally rep-
resents the simple interaction of individuals where they can
engage in discussions about an ongoing outbreak or diseases in
general, the mean-field type transmission accounts for a less
clear-cut interaction, such as overhearing a discussion, where
information can be transmitted between individuals that are
not necessarily in direct contact. Many of these different mecha-
nisms of information generation and transmission can be easily
linked to various ways in which information is disseminated in
real-life.

It is natural to also incorporate the possibility for loss of respon-
siveness, consequently every Xr individual will transition to the Xnr

class at a constant rate dX, where X 2 {S, I}. Note that this form is
general enough that it could also model an individual’s inability
or refusal to act on information. Alternatively, as suggested in
[20], the rate of information loss can be encoded as a decreasing
function of the prevalence, a form that we do not explore in the
current paper. The principal benefits of being informed and
responding to the information can translate into reduced suscepti-
bility, reduced infectivity and/or faster recovery if infected. For
sake of completeness and to keep the model as general as possible,
we incorporate all the above but we note that their presence of ab-
sence will depend on the precise modelling context and should be
incorporated and used accordingly. The full suite of transitions are
given in Table 1.

The present model, in some sense, can be seen as a generaliza-
tion of the model in [10] but with a few important remarks. The
model by Funk [10], is different in that information is only gener-
ated via self-diagnosis from infected individuals and this can lead
to a qualitatively different behavior when compared to the pres-
ent case where information is also generated via treatment. The
model by Funk [10] uses a more general pairwise approach that
accounts for two separate networks but it does not include the
global prevalence-based transmission of information. In light of
the above, the model proposed here shares some common fea-
tures with some of the existing models but incorporate new ways
routes of information transmission: Implications for epidemic dynamics,
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Table 1
All transitions allowed by the coupled infection/information system, where X, Y 2 {S, I}
with individuals in treatment acting as members of the responsive classes (i.e.
Xr 2 {Sr, Ir,T}). Individuals in the treatment class return to being susceptible non-
responsive and responsive at rate pr and r(1 � p) with 0 6 p 6 1, respectively. The
reduced susceptibility, infectivity and faster recovery, as a result of acting on
information, is captured by the discount factors rs, ri 2 (0,1] and rr > 1. To model the
mean-field transmission of information it is assumed that in unit time an individual
may momentarily come into contact with kMF others not in their social network.
Along such links information flows at a rate mX. The function GX([Inr], [Ir]) maps the
prevalence of infection to the unit interval and is subsequently multiplied by the
constant rate dX. This form models the saturating effect of media on individual
behavioral response. Further explanations of the model rates and parameters are
offered in the main text and in Appendix A.

Transition Rate Contact Type

Inr + Snr ? 2Inr s Gd Infection
Inr + Sr ? Inr + Ir rss Gd Infection
Ir + Snr ? Ir + Inr ris Gd Infection
Ir + Sr ? 2Ir rsris Gd Infection
Inr ? T cnr Independent Infection
Ir ? T rrcnr Independent Infection
T ? Snr r�p Independent Infection
T ? Sr r�(1 � p) Independent Infection
Xr + Ynr ? Xr + Yr aX Gi Information
Xr + Ynr ? Xr + Yr mXkMF Mean-field Information
Xnr ? Xr dXGX([Inr], [Ir]) Independent Information
Inr ? Ir x Independent Information
Xr ? Xnr dX Independent Information
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in which information can be generated and transmitted and gives
further insight into the problem via semi-analytic R0 calculations.
3. Results

We seek to explore the efficacy of our chosen mechanisms that
model behavioral change in attempting to slow or stop the spread
of a disease. This will be achieved by using a pairwise approxima-
tion (see Appendix A) and individual-based simulation model as
well as a probabilistic semi-analytic R0 calculation at the non-
trivial DFSS. An understanding of the capabilities of these processes
should provide useful information when designing information
campaigns to fight a potential disease outbreak or when attempt-
ing to assess the impact of those that are currently implemented.
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Fig. 1. Critical information rates resulting in a prevalence of Ieq = 0.01 as a function
of the per-contact infection transmission rate s (computed via the pairwise model).
For s > 0.42 and in the absence of information, the prevalence equilibrates at
Ieq > 0.01. At and beyond this point different amounts of each information rate are
needed to lower the prevalence to Ieq = 0.01. In this case, the effect of each
transmission route is investigated in the absence of all others. Solid and thick solid
line correspond to ac and xc, respectively. The four dashed lines represent dc for
different values of the population inertia parameter K = [0,5,20,100] increasing
from right towards the left. The values for ac are denoted on the right y axis and for
all other rates on the left y axis. Other parameters fixed across all data points are
p = 0.9, rs = ri = 0.5, rr = 2, cnr = 2, cr = rrcnr, d = cr, k = 6.
3.1. Pairwise model: comparison of information source efficacy

Pairwise ODE models [18] provide a good compromise between
simple compartmental and full simulation models and allows us to
capture more of the local nature of contacts and to depart from the
very limiting homogeneous random mixing assumption. For
example, this is important when modelling contact tracing [7,16]
where control relies on being able to answer the ‘who infected
whom’ type questions. In this case, the situation is similar in that
the local nature of individual to individual transmission of informa-
tion can lead to clusters of responsive individuals that are difficult to
capture via simple compartmental models. Based on all possible
transitions detailed in Section 2, pairwise equations can be derived
heuristically or based on a mechanistic approach. In total there are
20 equations, 5 for singles and 15 for pairs (see Appendix A). The
dimensionality of the system could be further reduced by taking
into account that the population is closed and that all pairs add up
to hkiN, where hki is the average node degree and N is the population
size. The system of equations can be numerically integrated using
standard methods (for more details and parameter values see
Appendix A). The system exhibits three qualitatively different
behaviors: (a) neither disease nor responsiveness can spread, (b)
only responsiveness spreads and a state of endemic-responsiveness
Please cite this article in press as: V. Hatzopoulos et al., Multiple sources and
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is reached and (c) both responsiveness and infection are
endemic.

The analysis begins by comparing information sources with re-
spect to their capacity to bring the prevalence to a desired low le-
vel, when each is acting in isolation. Information can achieve this
by shifting a large fraction of the population into the responsive
class. Such informed individuals will then experience decreases
in their infectivity and susceptibility as well as a faster recovery.
The minimum rate at which a source of information can bring
the prevalence to a desired low level will be referred to as the crit-
ical information transmission rate. We choose a prevalence level
greater than zero, specifically Ieq = 0.01, because as the prevalence
approaches zero precise identification of the critical information
rates becomes numerically challenging. Starting with a small initial
information generation or transmission rate, for a range of infec-
tion rates s with fixed recovery parameters, the system is seeded
with a small number of Inr and Sr individuals. The system of pair
approximation equations (see Appendix A) is then numerically
integrated to identify the smallest or critical rate that will lead to
the desired prevalence level Ieq. Next, the relative capacities of a,
x and d to deliver a state of low infection prevalence for different
values of s are considered. We let p = 0.9, which approaches a
worse case scenario limit whereby no information is generated
by the individuals themselves through past experience. This
parameter choice allows us to examine the effects of a, x and d
in relative isolation. As shown in Fig. 1 contact-based transmission
of information is by far the most efficient way to generate a
responsive population, a result well known in the diffusion of inno-
vations literature [25]. In this case every receiver of information (Inr

or Snr) immediately also becomes a transmitter of information, in
contrast to global transmission of information where the source
of information is at all times singular. The mean-field type trans-
mission of information, not shown in Fig. 1, is equally potent and
produces results that are similar to the contact-based transmission
case, especially if the network is densely connected. For smaller
values of hki, the mean-field transmission performs better than
the purely contact-based but the differences are small.

We model the transition to the responsive class due to media
exposure at a rate given by the function
routes of information transmission: Implications for epidemic dynamics,
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Fig. 2. The effect of combining different sources of information. On the top left
panel the endemic infection prevalence is shown for a range of a and s values. In the
remaining panels, for each combination of a and s, either global information or self-
diagnosis or both are added with the same constant rate equal to 12. All other
parameters are the same as in Fig. 1. (For interpretation to colours in this figure, the
reader is referred to the web version of this article.)
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Gsð½Inr�; ½Ir �Þ ¼ Gið½Inr�; ½Ir �Þ ¼
dð½Inr� þ ½Ir�Þn

K þ ð½Inr� þ ½Ir�Þn
; ð1Þ

where in this paper, n = 1 at all times. The effectiveness of global
information (acting on Inr or Snr) is strongly tied to the K parameter
which controls the growth of G() such that when the prevalence is
low the function grows like 1

K ðInr þ IrÞn. It is helpful to think of K as a
measure of population inertia in responding to information (note
that it is also possible to include such inertia parameters in the net-
work based information rates). Populations with high values of K
are resistant to behavioral change which can therefore act as an
indicator for the quality of global information campaigns. For exam-
ple, high values of K will simply lead to observing vanishingly small
benefits from global information campaigns. The critical rates for
self-diagnosis are at best similar to those for global information,
especially for diseases with low transmissibility. As is the case for
global information, self-diagnosis will only function once infected
individuals are present and the situation is somehow even less for-
tunate given that x can only act on Inr. The self-diagnosis rate can
be thought of as a model for the probability of a particular infection
being symptomatic. Thus for diseases with mild symptoms or those
that are asymptomatic the need for peer-to-peer communication
and low population inertia is even more pressing. Finally self-
diagnosis can, in cases where the population has very high
behaviorial inertia, be more effective than global information dis-
semination. This can be seen by comparing the appropriate curves
in Fig. 1. It is also worth noting that as s increases it is less and less
likely that information generation and/or transmission can prevent
an epidemic. More precisely at large but finite values of s, the rates
of information generation and/or transmission needed to halt the
spread will tend to unfeasible large values.

The numerical and individual based simulations suggest that
global information is never a more efficient way to lower infection
prevalence than contact-based transmission. The global informa-
tion transmission rate takes its maximum value as K ? 0, for large
d and high prevalence of infection, at which point G ’ d. For any va-
lue of d we have found that there is a contact-based rate a(a < d)
that will lower the prevalence at least by the same amount. Preli-
minary results also suggest that increasing the node/individual
specific heterogeneity in r, while keeping the same mean, results
in the lowering of prevalence as a large number of nodes, with
small values of r, are almost immune or unable to transmit the
infection. A somewhat similar observation holds for a, where many
nodes with limited potential to transmit the information will lead
to a higher prevalence.

In reality no single information source will act in isolation.
Media campaigns encourage discussion which can bring forth
behavioral change. Infected individuals are likely to learn from
experience and further communicate this to their family and
friends. Our model is able to accommodate such scenarios as we
show in Fig. 2 for various combinations of a, d and x. As expected
the a and d combination is the most effective pair while the com-
bination of all three sources is capable of eradicating a large major-
ity of epidemics for large s. Contact based transmission of
information is by far the most efficient as it constantly builds
new sources of information. Responsive individuals are then able
to halt the spread of an epidemic by forming clusters that can resist
infection invasions and this is discussed in more detail in the next
section.

3.2. The impact of network overlap on prevalence equilibria

In the most general case and for a given host population, infec-
tion diffuses on a network Gd and the social interactions can be
represented by a network Gi. The information transmission dynam-
ics coupled with the overlap pattern between networks determine
Please cite this article in press as: V. Hatzopoulos et al., Multiple sources and
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the extent to which disease can be slowed or halted. Slowing or
stopping an epidemic depends on both the number of responsive
individuals as well as their precise distribution around sources of
infection. Hence, increasing the effectiveness of the information/
responsiveness dissemination is equivalent to an optimization pro-
cess where increasing the number of responsive individuals has to
be coupled with achieving an optimal correlation pattern. For
example, it is beneficial if responsive susceptibles cluster around
infectives. Here, we focus on investigating how network overlap
and different information generation mechanisms impact on these
correlation patterns and ultimately on model outcome. The role of
the spatial structure or correlations is explored via individual-
based stochastic simulation. As in the case of the pairwise model,
the simulation model admits three equilibria: the trivial disease-
free steady state (DFSS), the non-trivial DFSS and a state where
information and infection remain endemic. Here, we aim to exam-
ine the mixing patterns between Snr, Sr, Inr and Ir in the endemic
state and between Snr and Sr in the non-trivial DFSS. Furthermore,
these correlations will be compared between non-overlapping and
overlapping networks.

The growth of infection is shown in Fig. 3 for Poisson random
graphs and for different methods of information generation (i.e.
via treatment alone with p = 0 and x = 0 and via self-diagnosis
with p = 1.0 and x – 0). In both cases, once information is gener-
ated it can only be passed on via the information transmitting net-
work. The prevalence of infection grows faster when networks do
not overlap, although this difference is more significant in the x
– 0 case. This is in line with previous findings [10] but merits clo-
ser scrutiny. In the x – 0 case, information is generated via Inr ? Ir

type transitions and thus the newly informed infectives can trans-
mit both information and disease. Given that the neighbouring
nodes on Gd of these Ir individuals are at immediate risk of infec-
tion, it is desirable that these nodes are also neigbours of the Ir

individuals on Gi. If this is the case, and the transmission rate of
information is faster than the transmission rate of the disease, it
is likely that infection can be stopped. However, if the networks
do not overlap, then responsive or informed individuals will trans-
mit the information to those that are not at immediate risk of
infection and thus with little immediate benefit. Therefore, in this
routes of information transmission: Implications for epidemic dynamics,
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Fig. 3. Time evolution of the total infection prevalence, based on simulation results,
for overlapping (thin lines) and non-overlapping (thick lines) Poisson random
graphs. Responsiveness is generated by those in treatment with p = x = 0 (red lines)
and by infected individuals with p = 1 and x = 52 (blue lines). In all cases,
responsiveness only diffuses via neighborhood contacts. When the networks do not
overlap the number of infected grows faster, however when responsiveness is
generated by individuals in treatment the overlap plays a less significant role. Both
systems tend to very similar states with infection prevalence being slightly higher
in the non-overlapping cases. Other parameters are: s = 2.5, a = 1.3, rs = ri = 0.5,
rr = 2,cnr = 2, cr = rrcnr, d = cr, N = 104 and hki = 8. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)
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case, information acts similarly to random vaccination with bene-
fits only coming into play when infection reaches pockets of
responsive clusters. According to Fig. 3, complete overlap slows
the epidemic initially but it cannot preemptively inform individu-
als that are not at immediate risk of infection. For complete non-
overlap however, the situation changes in that the epidemic picks
up early but later on reaches a large number of individuals with re-
duced susceptibility and therefore the spread slows. While the long
term behaviour for non-overlap and overlap is similar, the slow ini-
tial growth may offer an advantage as it extends the period to
implement other complementary control measures.

On the other end of the spectrum, information could be gener-
ated by those in treatment. In this case the amount of edge overlap
between the network has a less significant effect on the time evo-
lution of the spread and final outcome. Here, individuals in treat-
ment (Ts) can typically inform Snrs and/or Inrs. However, even for
complete overlap, informing non-responsive susceptible neigbours
is not of immediate benefit since these are not at immediate risk of
infection. The most significant benefit of complete overlap is the
transmission of information from Ts to Inrs. This will lower the
infectivity of infectious individuals but it is far less effective com-
pared to the x – 0 case due to information lagging behind the
transmission of the disease. In effect, this is similar to contact trac-
ing where, new infections are identified via the infector. In this
case, the slight differences between overlap and non-overlap (see
Fig. 3) is also reflected in the time evolution of the [TInr] pairs
whereby the growth of these is faster in the non-overlapping case.
This means that more Inrs remain uninformed and thus lead to a
slightly faster initial increase in the prevalence of infection. This ef-
fect disappears quickly as the information makes progress and
many individuals become responsive. At this stage the local inter-
action has less of an effect given that a considerable part of the
individuals are already responsive.

In the context of our model, the arguments above can be under-
pinned by investigating the propensity of susceptible responsive
individuals to cluster around infectives. This can be measured by
the following conditional probability

PðSr � IyjSx � IyÞ ¼
X

y¼r;nr

½SrIy�=
X

x;y¼r;nr

½SxIy�:
Please cite this article in press as: V. Hatzopoulos et al., Multiple sources and
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This represents the fraction of all Sx � Iy pairs with Sx = Sr and indi-
cates the correlation of information and infection. If information
and infection are neutrally correlated, for example if they spread
on two networks that have disjoint edge sets, then one would ex-
pect P(Sr � IyjSx � Iy) = Q(Sr) = Nr/N (i.e. equal to the probability of
finding an Sr if picking nodes at random). The time evolution of
the conditional probabilities for overlapping and non-overlapping
Poisson networks are shown in Fig. 4. The correlations develop
and persist as the systems settle to an equilibrium prevalence.
The amount of overlap plays a significant role only when informa-
tion is generated via self-diagnosis (i.e. x – 0) (see blue lines in
Fig. 4), and in this case, information is close to infection as shown
by higher values of the correlations. On the other hand if the infec-
tives spread infection and responsiveness to a completely disjointed
neighbourhoods then initially there is very little correlation until la-
ter when there is a substantial amount of infection and information.
In all cases the system settles to an endemic state with non-zero
infection and responsiveness and will remain correlated (i.e. condi-
tional probability far from the diagonal). In this equilibria, there is
high correlation between infectives and informed since both man-
aged to invade and occupy parts of the network. This particular cor-
relation is a result of the system being in a form of statistical
equilibrium where information loss and gain as well as recovery
and new infections all balance out. Fig. 4 also shows the good qual-
itative agreement between the pairwise and simulation model for
complete overlap, and highlights the merits of concurrently using
both.

Using pair-wise models permit us to track the evolution of pairs
that capture the spatio-temporal diffusion of information at a level
of description unattainable in simple ODE models. Furthermore
pair-approximation are naturally more appropriate descriptions
of simulation-based network models which are based on explicit
structure representations[16]. As will shall see in the next section
knowledge of the information mixing patterns will prove instru-
mental in performing a novel individual based R0 calculation.
4. Individual-based calculation of Rd
0

The coupled disease and information transmission model ad-
mits two disease-free steady states: (a) trivial (1,0,0,0,0) and (b)
routes of information transmission: Implications for epidemic dynamics,
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non-trivial (1 � s0,s0,0,0,0) (DFSSs). The trivial DFSS can be per-
turbed via the spread of infection and/or responsiveness, provided
that system is seeded accordingly or whether responsiveness can
be generated directly (i.e. Inr ? Ir). Here, the case of the trivial dis-
ease-free steady state is not discussed (see [11]) and the focus is on
determining the potential of an initial infected individual to invade
or spread within a population that is at an equilibrium with respect
to the transmission of responsiveness. Thus, the basis for calculat-
ing Rd

0 is provided by the characteristics of the equilibrium of ende-
mic responsiveness, where all nodes are either Snr or Sr and are
arranged in a particular configuration on the disease transmission
network (Gd) as determined by the information transmission pro-
cess (e.g. local via contacts Gi and mean-field) and the particular
overlap between the routes of responsiveness and disease
transmission.

In this case, computing Rd
0 amounts to determining whether a

particular equilibrium is stable against perturbation induced by
mutating a randomly chosen individual to the Ix state, where
x 2 {nr,r}. A population with elevated levels of responsiveness will
be able to slow or halt the spread of an epidemic by virtue of reduc-
tions in the infectivity, susceptibility and an increase in the recov-
ery rate of responsive individuals. Consequently, in this model we
define Rd

0 as: the expected number of secondary infections caused by a
typical infective in a completely susceptible population in a state of en-
demic responsiveness. In general, Rd

0 will depend on the amount of
responsiveness but also on the presence, or absence, of correlations
between the non-responsive and responsive individuals/nodes.
The Rd

0 calculations assume that the distribution responsiveness
is at equilibrium, hence neighbors of the initial index case will
not change their responsiveness status due to forgetting or become
responsive due to responsive neighbors on the information trans-
mission network Gi.

The crucial ingredients for determining Rd
0 are: (a) the frequency

of Snr and Sr individuals denoted by Q(Sx) = [Sx]/N, where x 2 {nr,r}
and (b) the correlation pattern, and in particular, the conditional
probabilities (i.e. P(SyjSx) with x 2 {nr,r}) that describe the neigh-
borhood composition of a node on the Gi network as given by the
population level average, at the state of endemic responsiveness.
The first step in calculating Rd

0 is to select at random a susceptible
individual and mutate this into an Inr or Ir individual. Thereafter,
the spread of the disease will depend on the local neighborhood
around the mutated individual and the enumeration of all the pos-
sible ways in which new infections can be generated. Information
about the average number of possible onwards infections is pro-
vided the average excess degree of a node, D ¼ hki � 1þ VarðkÞ

hki ,
where hk i is the average number of connections per individual
and Var (k) represents the variance as given by the node degree
distribution on the Gi network. Combining all the above, the
expression for Rd

0 in the case of proportionately or randomly mixed
networks can be written as

Rd
0 ¼ D

X
x;y;z2fnr;rg

QðSxÞPðSx ! IyÞPðSzjSxÞPððIy; SzÞÞ; ð2Þ

where Q(Sx) represents the probability of picking a node of type Sx at
random and P(Sx ? Iy) represents the probability of mutating a sus-
ceptible node to Ix, x 2 {nr, r}. This probability is arbitrary and is not
an endogenous system parameter (i.e. one could chose any arbitrary
value in [0,1]). P((Iy,Sz)) denotes the probability with which an
(Iy,Sz) edge generates a new infection. Expanding the sum we get
the following eight terms:

Rd
0 ¼ QðSnrÞPðSnr ! InrÞPðSnr jSnrÞPððInr ; SnrÞÞ
þ QðSnrÞPðSnr ! InrÞPðSr jSnrÞPððInr ; SrÞÞ
þ QðSnrÞPðSnr ! IrÞPðSnr jSnrÞPððIr ; SnrÞÞ
þ QðSnrÞPðSnr ! IrÞPðSr jSnrÞPððIr; SrÞÞ
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þ QðSrÞPðSr ! InrÞPðSnr jSrÞPððInr; SnrÞÞ
þ QðSrÞPðSr ! InrÞPðSr jSrÞPððInr; SrÞÞ
þ QðSrÞPðSr ! IrÞPðSnrjSrÞPððIr; SnrÞÞ
þ QðSrÞPðSr ! IrÞPðSrjSrÞPððIr ; SrÞÞ: ð3Þ

Assuming that a state of endemic responsiveness has been estab-
lished in the population, Q(Sx) and P(SyjSx) are given. We note that
the expressions for the conditional probabilities P(SyjSx) are inde-
pendent of node degree. However correlations between the infor-
mation compartments and degrees of two nodes at the ends of a
link can be introduced by making the generalization
PðSyjSxÞ ! PðSl

yjS
k
xÞ where l,k are node degrees that are bounded by

the network connectivity. Strictly speaking the calculations pre-
sented here work best when the network is homogeneously mixed.
The probability of mutating into Ix can be binary or imposed as re-
quired by a particular modelling context. The more technical part is
to write down the probability that infection will happen across an
(Sx, Iy) edge. All these calculations rely on a schematic diagram as
shown in Fig. 6. Here, starting with a particular pair (i.e. (Snr, Inr)),
all potential end states are listed by following a Markovian type
process with one single change allowed during any single step.
The complications arise from the fact that self-diagnosis or the
repeated forgetting and acquiring of responsiveness leads to an
infinite tree of possible outcomes which makes calculations non-
trivial. A new infection on any such tree results will result from
an (Snr, Inr), (Snr, Ir), (Sr, Inr) or (Sr, Ir) pair denoted by A, B, C and D,
respectively. To fully describe the problem, all trees starting with
any one of the four pairs needs to be considered. Independently of
the source of the tree, all four pairs will be present in future gener-
ations, and calculating the probabilities of encountering these pairs
is crucial for calculating Rd

0. Before discussing the four different tree
types, it is worth noting that the probabilities of an infection origi-
nating from pairs A, B, C and D, given all other possible events, can
be simply written as

pinf
A ¼

s
cnr þxþ s

;pinf
B ¼

sri

cr þ aþ sri þ d
;

pinf
C ¼

srs

cnr þxþ aþ srs þ d
;pinf

D ¼
srsri

cr þ 2dþ srsri
: ð4Þ

For a given starting point in the tree (say A), the first task is to ob-

tain the expected number of pair types A PA
A

� �
;B PA

B

� �
; C PA

C

� �
and

D PA
D

� �
that can be reached in the complete tree. These expectation

values can then be simply multiplied by the probability of a new

infection resulting from a particular pair (i.e.
P

X2fA;B;C;Dgp
inf
X PA

X). Be-
low, for the tree starting with node A, the full details of the calcula-
tions are given followed by more succinct summaries for the three
remaining trees in Appendix D. The technique only depends on the
precise knowledge of all possible transitions from a given pair to
other pairs and the probability of these transitions as listed in
Appendix B.
4.1. Tree starting with pair (Snr, Inr)

The removal of all end states from Fig. 5 results in a simplified
diagram (see Fig. 6(a)). To work out the probability of reaching all
A, B, C and D pairs, the tree is first simplified by noting that in every
even generation, with the starting A being generation 0, only As
and Ds occur, and similarly Bs and Cs only appear in every odd gen-
eration. Hence, the tree can be further reduced to a tree with only
As and Ds as given in Fig. 6(b). It is now useful to define the prob-
ability of reaching a particular pair type i in generation n, given
that the tree started with pair X, by iX(n), where i 2 {a,b,c,d},
X 2 {A,B,C,D} and n = 0, 1, 2, . . . . Based on this, and on the
routes of information transmission: Implications for epidemic dynamics,
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Fig. 5. The diagram/tree of all transitions starting from pair (Snr, Inr). This is constructed based on a Markov process type transition with only one change allowed at each step.

(a) (b)

Fig. 6. (a) The equivalent of Fig. 5 based on excluding all end states and denoting pairs (Snr, Inr), (Snr, Ir), (Sr, Inr) and (Sr, Ir) by A, B, C and D, respectively. (b) A reduction of the
tree in (a) obtained by only considering pairs in every even generation, with the tree starting at generation zero. The rates of the reduced tree, rA

AA , rA
AD; r

A
DA and rA

DD , are obtained
from the original tree by enumerating all possible ways of getting the desired transitions together with their probabilities.
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simplified tree in Fig. 6(b), the following system of coupled recur-
rence equations can be derived,

aAðnþ 1Þ ¼ rA
AAaAðnÞ þ rA

DAdAðnÞ; ð5Þ
dAðnþ 1Þ ¼ rA

ADaAðnÞ þ rA
DDdAðnÞ; ð6Þ

with initial condition (aA(0),dA(0)) = (1,0), where
rA

AA ¼ rABrBA; rA
AD ¼ rABrBD; rA

DA ¼ rDBrBA þ rDCrCA and rA
DD ¼ rDBrBDþ

rDCrCD. We note that these probabilities are derived based on exam-
ining the full tree and considering the probability with which As
and Ds generate more As and Ds two generations down the tree.
Working out the probability of going from a node to another simply
amounts to multiplying together all transition probabilities along
the path from a source to a target node. For the first few genera-
tions, it is easy to check that aA(n) will give the sum of all probabil-
ities of reaching all possible As present in generation n. Hence, the
following identities hold
Please cite this article in press as: V. Hatzopoulos et al., Multiple sources and
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PA
A ¼

X1
n¼0

aAðnÞ; PA
D ¼

X1
n¼0

dAðnÞ: ð7Þ

Given that each A generates a B with probability rAB, and that D gen-
erates a B and a C with probability rDB and rDC, the following equa-
tions hold

PA
B ¼ PA

ArAB þ PA
DrDB; P

A
C ¼ PA

DrDC : ð8Þ

Therefore, the only task is to find PA
A and PA

D. Using simple linear
algebra techniques, as detailed in Appendix C (see Eqs. (47) and
(48)), these are given by

PA
A ¼

1� rA
DD

1� rA
AA þ rA

DD

� �
þ rA

AArA
DD � rA

ADrA
DA

;

PA
D ¼

rA
AD

1� rA
AA þ rA

DD

� �
þ rA

AArA
DD � rA

ADrA
DA

: ð9Þ
routes of information transmission: Implications for epidemic dynamics,
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Collating all the information above, the probability of an infection
from an (Snr, Inr) pair is

PððSnr ; InrÞÞ ¼
X

X2fA;B;C;Dg
pinf

X PA
X : ð10Þ

The derivation of the trees starting with states B, C and D in gener-
ation 0 are very similar and are shown in Appendix D. All the results
from the four starting pairs feed directly into Eq. (2) to provide an
analytical expression for Rd

0. This expression provides the means
to investigate and tease apart the impact of factors such as the num-
ber of responsive individuals as well as the precise correlation be-
tween non-responsive and responsive individuals. The latter can
be consolidated in a correlation matrix given as,

Pcorr ¼
PðSnrjSnrÞ PðSrjSnrÞ
PðSnrjSrÞ PðSrjSrÞ

� �
:

Working under the assumption of homogeneous random mixing,
distributing Q(Snr)N non-responsive and Q(Sr) = N(1 � Q(Snr))
responsive individuals results in a correlation pattern given by
P(SnrjSnr) = P(SnrjSr) = Q(Snr) and P(SrjSnr) = P(SrjSr) = Q(Sr). In
Fig. 7(a), the value of Rd

0 is plotted for different proportions of
non-responsive individuals. While in this case both the number of
responsive individuals and correlation change, the effect on Rd

0 is
significant with a higher number of responsive individuals leading
to a significantly lower value of Rd

0. In Fig. 7(b), the number of
non-responsive individuals is kept fixed and only the correlation
pattern is varied. This can be achieved using a simple two parame-
ter model that determines uniquely the state of endemic respon-
siveness. In particular, for a regular random graph, considering
x = Q(Sr) as the first free parameter the following equations must
hold

QðSnrÞ ¼ 1� x; ð11Þ

PðSnrjSnrÞ þ PðSr jSnrÞ ¼ 1; ð12Þ

PðSnrjSrÞ þ PðSr jSrÞ ¼ 1; ð13Þ

QðSnrÞPðSrjSnrÞ ¼ QðSrÞPðSnrjSrÞ; ð14Þ

where, the first equation is trivial, the second and third are the nor-
mal requirements for conditional probabilities and the fourth is the
detailed balance condition which guarantees that individuals of dif-
ferent types are connected up in a consistent manner. The second
free parameter is chosen to be y = P(SnrjSnr), and all other variables
follow in terms of x and y,
0 1 2 3 4 5
0

1

2

3

4

5 (a)

τ

R
0
d

Fig. 7. Plots of Rd
0 for (a) homogeneous random mixing with Q(Sr) = 0.9 (continuous line)

Q(Sr) = 0.20 and correlations given by y = 0.75, 0.875, 1 (black continuous, dashed and do
1 (red continuous, dashed and dotted lines). The other parameter values are: P(Snr ? In

d = cnr and a = 2d.(For interpretation of the references to colour in this figure legend, th
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PðSr jSnrÞ ¼ 1� y; PðSnrjSrÞ ¼
ð1� xÞð1� yÞ

x
and

PðSr jSrÞ ¼ 1� ð1� xÞð1� yÞ
x

:

It is worth noting that all variables must be greater or equal zero
and less or equal one. This requires that x 2 [0,1] and max (0,
(1 � 2x)/(1 � x)) 6 y 6 1. Fig. 7(b) shows that for a fixed level of
responsiveness in the population (see group of black and red
curves), different correlations lead to significantly different values
of Rd

0. It is not straightforward to establish a link between the corre-
lation matrix Pcorr and the value of R0. However, some simple obser-
vations hold. For example if P(SnrjSnr) is high then the values of Rd

0

will be high and, in certain regimes, increasing assortativity in
responsiveness (e.g. non-responsive and responsive individuals
preferentially connect to individuals of the same type) also leads
to higher values of Rd

0. The lack of a simple relation is to be expected
given that the impact of a particular pair type strongly depends on
other parameters such as transmission or loss of responsiveness and
the benefits of being in a responsive state.

Even though a recipe for the optimal spatial correlation of Snrs
and Srs is not forthcoming, it is possible nonetheless to gain some
insight into the effectiveness of certain configurations by examin-
ing the output from individual based simulations. In Fig. 8, the time
evolution of the neighborhood around an informed susceptible for
completely overlapping and non-overlapping Poisson random
graphs is shown. In this case, information halts the spread of infec-
tion and the system settles to an endemic responsiveness. Fig. 8,
for full network overlap, shows that Sr individuals quickly build
an assortative mixing pattern which stays fairly constant over time
and then quickly decays just above neutral mixing after the infec-
tion has died out. For non-overlapping networks the assortativity
in Sr slowly builds up to a lower magnitude before it collapses on
the diagonal. Although this behavior might seem to favor the over-
lapping networks, the less than expected dissasortativity in the
overlapping case can hamper the spread of responsiveness (left pa-
nel Fig. 8). This is because it is now less likely to find a non-respon-
sive next to a responsive type, a configuration which does not
benefit the diffusion of information. In other words in completely
overlapping networks information might get stuck in self sustain-
ing clusters that can resist invasion whilst non-overlapping net-
works lead to almost neutral mixing in information which can
aid diffusion at remote parts in the network, with both scenarios
having their own merit.

The analytic expression of Rd
0 can also be used to determine

numerically the critical values of parameters such as a, x and d
needed to bring the basic reproduction number below one. This
might prove to be a useful tool in real applications where the level
0 1 2 3 4 50
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5 (b)

, Q(Sr) = 0.5 (dashed line) and Q(Sr) = 0.1 (dotted line), and for (b) fixed frequency of
tted lines), and frequency Q(Sr) = 0.40 with correlation patterns given by y = 1/3, 2/3,
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Fig. 8. The probability that in an Sx � Sr pair we find Sx = Snr (left panel) and Sx = Sr (right panel) for overlapping (thick lines) and non-overlapping (thin lines) Poisson random
graphs plotted against the prevalence of the type Sx as the system evolves to its steady state. Information generated by those in treatment with p = 0.5 and x = 0. All other
parameters are the same as in Fig. 3 except s = 0.8.
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and impact of control interventions need to be measured. The
method for computing Rd

0 method can be generalized to capture
all four pair types at once, but in this case, due to the increased
dimensionality of the transition matrix, calculations will become
less transparent. It is worth noting that when analytic calculation
may fail to give a closed form expression, this technique can be
easily implemented using a simple programming language to de-
rive numerical estimates and to assess the implications of truncat-
ing the recurrence equations at some finite generation.
5. Discussion and further work

Incorporating behavioural change into epidemiological models
is a challenging task with many unknowns when modelling the
transmission of information and responsiveness of people. These
are complex processes with many heterogeneities at the individual
level in how information is acquired, processed, acted upon and
transmitted further. In this paper, we derived and analyzed a pair-
wise and simulation model that capture multiple ways of generat-
ing and transmitting information as well as the overlap between
routes of disease and information transmission. The pairwise mod-
el, for two completely overlapping networks, was used to assess
the efficacy of different sources of information generation and
routes of information transmission in bringing prevalence to as a
low level as possible. Contact based transmission of information
was found to be the most efficient as it creates multiple secondary
sources of information and outcompetes processes such as the glo-
bal transmission of information. The analysis, in line with previous
findings [11], also shows that information cannot always stop an
epidemic but can significantly reduce its impact via lowering the
prevalence of infection.

The individual based model was used to study the effects of net-
work structure using a simple similarity measure, the neighbor-
hood overlap of an individual between disease and information
transmission (i.e. Gd and Gi). We showed evidence to suggest that
the effect of neighborhood overlap is tightly linked to the primary
generation of information and can result in the creation of different
correlation structures in responsiveness (see Fig. 8) and also be-
tween responsiveness and infection (see Fig. 4). The particular
Please cite this article in press as: V. Hatzopoulos et al., Multiple sources and
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types of information generation and transmission will heavily de-
pend on disease characteristics and these will impact on model
outcome and on establishing what the most influential factors
are in controlling epidemics via information transmission. A more
realistic specification of the information and infection networks
aided by real world data, for example from sexual health surveys
and email exchange volumes, would allows us to further tease
apart the importance of edge overlap as well as identify other net-
work measures that may be significant, such as the path length dif-
ference between networks and the occurrence of network motifs,
and examine their effect on the two diffusion processes. It is rarely
the case that diseases invade populations that are fully naive. A
number of responsive individuals are always present due to past
epidemics or simply due to awareness being a trait that arises
independently of past epidemics through genetic, social, cultural
or economic reasons. In either case, the number of responsive indi-
viduals and their precise distribution will have an important im-
pact on whether newly seeded infections can invade. In this
paper, we presented a semi-analytic calculation of R0 based on
probabilistic arguments and showed that the mixing patterns in
information can significantly alter the basic reproductive number
of the disease. This is an important result since it opens up the pos-
sibility to tune or optimize responsiveness in order to limit the po-
tential of new outbreaks.

A number of simplifying assumptions on human behavior are
built into our model. There are only two levels of information
awareness and transitions between them are instantaneous. In the
real world an individual’s exposure to the risk of infection is cer-
tainly not limited to two categories. People are also likely to react
to information around them via imitative behavior with individuals
having different propensity for changing their behavior. Further-
more the decision to act on information may depend on the source
of information - or the combination of sources of information - the
order of arrival of information, or any segmentation of the popula-
tion as discussed in the introduction. Our individual based model
is designed such that it can accommodate further behavioral heter-
ogeneities, such as those mentioned above. There is now enough
evidence to suggest that cognitive and social aspects of a host pop-
ulation, as well as a network of contacts (particularly in the case of
routes of information transmission: Implications for epidemic dynamics,
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STD’s), are interacting and altering the epidemiological profile of an
infectious pathogen. These are early days for behaviorial epidemiol-
ogy and in the future it is likely that knowledge generated in other
fields, for example cognitive and evolutionary psychology, commu-
nications theory, market research, game theory, anthropology,
geography and demography should be examined for integration
into epidemiological modelling.
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Appendix A. Pair-approximation equations

Here, the equation of the pair-approximation model that ac-
counts for disease transmission through a static network of con-
tacts and three different routes of responsiveness transmission
are given. The first route of responsiveness transmission overlaps
completely with the disease transmission route, while the second
and third account for mean-field and global transmission of infor-
mation, respectively. The equations are:

_½Snr� ¼ �s½SnrInr � � sri½SnrIr� þ pr½T� � kCasð½SnrSr � þ ½SnrIr�
þ ½SnrT�Þ � kMFmskMFð½Sr � þ ½Ir� þ ½T�Þ½Snr�=N

� kGGsð½Inr�; ½Ir �Þ½Snr� þ ds½Sr �; ð15Þ

_½Sr� ¼ �srs½SrInr� � srirs½SrIr� þ ð1� pÞr½T� þ kCasð½SnrSr �
þ ½SnrIr� þ ½SnrT�Þ þ kMFmskMFð½Sr � þ ½Ir� þ ½T�Þ½Snr�=N

þ kGGsð½Inr�; ½Ir�Þ½Snr � � ds½Sr�; ð16Þ

_½Inr� ¼ þs½SnrInr� þ sri½SnrIr � � c½Inr� � kCaið½InrSr � þ ½InrIr �
þ ½InrT�Þ � kMFmikMFð½Sr � þ ½Ir� þ ½T�Þ½Inr�=N

� kGGið½Inr �; ½Ir�Þ½Inr� þ di½Ir� �x½Inr�; ð17Þ

_½Ir � ¼ þsrs½SrInr� þ srirs½SrIr � � crr ½Ir� þ kCaið½InrSr� þ ½InrIr�
þ ½InrT�Þ þ kMFmikMFð½Sr� þ ½Ir � þ ½T�Þ½Inr�=N

þ kGGið½Inr �; ½Ir �Þ½Inr � � di½Ir � þx½Inr �; ð18Þ

_½T� ¼ þc½Inr� þ crr ½Ir � � r½T�; ð19Þ

_½SnrSnr� ¼ �2s½SnrSnrInr� � 2sri½SnrSnrIr� þ 2pr½SnrT�
þ 2ds½SnrSr� � 2kCasð½SnrSnrSr� þ ½SnrSnrIr�
þ ½SnrSnrT�Þ � 2kMF mskMFð½Sr � þ ½Ir � þ ½T�Þ½SnrSnr�=N

� 2kGGsð½Inr�; ½Ir �Þ½SnrSnr �; ð20Þ

_½SnrSr� ¼ �srs½SnrSrInr� � srirs½SnrSrIr� � s½InrSnrSr �
� sri½IrSnrSr � þ pr½TSr� þ ð1� pÞr½SnrT�
þ kCasð½SnrSnrSr� þ ½SnrSnrIr� þ ½SnrSnrT�Þ
þ kMFmskMFð½Sr� þ ½Ir� þ ½T�Þ½SnrSnr �=N

þ kGGsð½Inr�; ½Ir�Þ½SnrSnr� � kCasð½SrSnrSr� þ ½IrSnrSr�
þ ½TSnrSr�Þ � kMFmskMFð½Sr� þ ½Ir � þ ½T�Þ½SnrSr�=N

� kGGsð½Inr�; ½Ir�Þ½SnrSr� � ds½SnrSr� þ ds½SrSr�
� kCas½SnrSr �; ð21Þ
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_½SrSr� ¼ �2srs½SrSrInr� � 2srsri½SrSrIr � þ 2ð1� pÞr½SrT�
þ 2kCasð½SrSnrSr� þ ½IrSnrSr� þ ½TSnrSr�Þ
þ 2kMFmskMFð½Sr � þ ½Ir� þ ½T�Þ½SnrSr �=N

þ 2kGGsð½Inr�; ½Ir�Þ½SnrSr� � 2ds½SrSr � þ 2kCas½SnrSr�; ð22Þ

_½SnrInr� ¼ þs½SnrSnrInr� þ sri½SnrSnrIr � � s½InrSnrInr �
� sri½IrSnrInr� � s½SnrInr� � kCasð½SrSnrInr� þ ½IrSnrInr�
þ ½TSnrInr �Þ � kMFmskMFð½Sr� þ ½Ir � þ ½T�Þ½SnrInr�=N

� kGGsð½Inr�; ½Ir�Þ½SnrInr � � kCaið½SnrInrSr � þ ½SnrInrIr �
þ ½SnrInrT�Þ � kMFmikMFð½Sr� þ ½Ir� þ ½T�Þ½SnrInr�=N

� kGGið½Inr�; ½Ir�Þ½SnrInr � � c½SnrInr� þ rp½TInr� þ di½SnrIr�
þ ds½SrInr� �x½SnrInr�; ð23Þ

_½SnrIr � ¼ þsrs½SnrSrInr� þ srirs½SnrSrIr� � s½InrSnrIr�
� sri½IrSnrIr � � sri½SnrIr � þ kCaið½SnrInrSr� þ ½SnrInrIr�
þ ½SnrInrT�Þ þ kMFmikMFð½Sr� þ ½Ir � þ ½T�Þ½SnrInr�=N

þ kGGið½Inr �; ½Ir �Þ½SnrInr� � kCasð½SrSnrIr� þ ½IrSnrIr �
þ ½TSnrIr�Þ � kMFmskMFð½Sr � þ ½Ir� þ ½T�Þ½SnrInr�=N

� kGGsð½Inr �; ½Ir �Þ½SnrInr� � crr ½SnrIr � � di½SnrIr � þ ds½SrIr �
� kCas½SnrIr� þ pr½TIr � þx½SnrInr�; ð24Þ

_½SrInr � ¼ þs½SrSnrInr� þ sri½SrSnrIr � � srs½InrSrInr�
� srirs½IrSrInr � � srs½SrInr� þ kCasð½SrSnrInr� þ ½IrSnrInr �
þ ½TSnrInr�Þ þ kMF mskMFð½Sr � þ ½Ir � þ ½T�Þ½SnrInr �=N

þ kGGsð½Inr �; ½Ir �Þ½SnrInr� � kCaið½SrInrSr� þ ½SrInrIr �
þ ½SrInrT�Þ � kMFmikMFð½Sr � þ ½Ir � þ ½T�Þ½SrInr�=N

� kGGið½Inr �; ½Ir �Þ½SrInr� � c½SrInr� þ ð1� pÞr½TInr�
� ds½SrInr� þ di½SrIr � � kCai½SrInr� �x½SrInr�; ð25Þ

_½SrIr � ¼ þsrs½SrSrInr � þ srirs½SrSrIr � � srs½InrSrIr �
� srirs½IrSrIr� � srirs½SrIr� þ kCasð½SrSnrIr � þ ½IrSnrIr�
þ ½TSnrIr�Þ þ kMFmskMFð½Sr� þ ½Ir � þ ½T�Þ½SnrIr �=N

þ kGGsð½Inr�; ½Ir �Þ½SnrIr� þ kCaið½SrInrSr � þ ½SrInrIr�
þ ½SrInrT�Þ þ kMFmikMFð½Sr � þ ½Ir� þ ½T�Þ½SrInr�=N

þ kGGið½Inr�; ½Ir �Þ½SrInr� � crr½SrIr � þ ð1� pÞr½TIr �
� ds½SrIr � � di½SrIr� þ kCas½SnrIr � þ kCai½SrInr� þx½SrInr�; ð26Þ

_½InrInr� ¼ þ2s½InrSnrInr� þ 2sri½InrSnrIr � þ 2s½SnrInr � � 2c½InrInr�
� 2kCaið½InrInrSr � þ ½InrInrIr� þ ½InrInrT�Þ
� 2kMFmikMFð½Sr� þ ½Ir � þ ½T�Þ½InrInr�=N

� 2kGGið½Inr �; ½Ir �Þ½InrInr� þ 2di½InrIr � � 2x½InrInr�; ð27Þ

_½InrIr� ¼ þs½InrSnrIr � þ sri½IrSnrIr� þ srs½InrSrInr� þ srirs½InrSrIr�
þ sri½SnrIr � þ srs½InrSr� � ðcþ crrÞ½InrIr �
þ kCaið½InrInrSr� þ ½InrInrIr � þ ½InrInrT�Þ þ kMF mikMFð½Sr �
þ ½Ir � þ ½T�Þ½InrInr�=N þ kGGið½Inr�; ½Ir�Þ½InrInr�
� kCaið½SrInrIr� þ ½IrInrIr� þ ½TInrIr �Þ � kMFmikMFð½Sr �
þ ½Ir � þ ½T�Þ½InrIr�=N � kGGið½Inr �; ½Ir�Þ½InrIr� � di½InrIr�
þ di½IrIr � � kCai½InrIr� þx½InrInr� �x½InrIr �; ð28Þ
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_½IrIr � ¼ þ2srs½InrSrInr� þ 2srirs½IrSrIr� þ 2srirs½SrIr �
þ 2kCaið½SrInrIr � þ ½IrInrIr � þ ½TInrIr�Þ þ 2kMFmikMFð½Sr�
þ ½Ir� þ ½T�Þ½InrIr �=N þ 2kGGið½Inr�; ½Ir �Þ½InrIr � � 2crr½IrIr�
þ 2kCai½IrInr � � 2di½IrIr� þ 2x½InrIr �; ð29Þ

_½SnrT� ¼ �s½InrSnrT� � sri½IrSnrT� � kCasð½SrSnrT� þ ½IrSnrT�
þ ½TSnrT�Þ � kMFmskMFð½Sr� þ ½Ir� þ ½T�Þ½SnrT�=N

� kGGsð½Inr �; ½Ir �Þ½SnrT� þ c½SnrInr � þ crr ½SnrIr � þ ds½SrT�
þ pr½TT� � r½SnrT� � kCas½SnrT�; ð30Þ

_½SrT� ¼ �srs½InrSrT� � srirs½IrSrT� þ kCasð½SrSnrT� þ ½IrSnrT�
þ ½TSnrT�Þ þ kMFmskMFð½Sr� þ ½Ir � þ ½T�Þ½SnrT�=N

þ kGGsð½Inr�; ½Ir �Þ½SnrT� þ c½SrInr� þ crr ½SrIr� � ds½SrT�
� r½SrT� þ rð1� pÞ½TT� þ kCas½SnrT�; ð31Þ

_½InrT� ¼ þs½InrSnrT� þ sri½IrSnrT� � kCaið½SrInrT� þ ½IrInrT�
þ ½TInrT�Þ � kMFmikMFð½Sr� þ ½Ir� þ ½T�Þ½InrT�=N

� kGGið½Inr�; ½Ir�Þ½InrT� þ c½InrInr� þ crr ½InrIr � þ di½IrT�
� r½InrT� � c½InrT� � kCai½InrT� �x½InrT�; ð32Þ

_½IrT� ¼ þsrs½InrSrT� þ srirs½IrSrT� þ kCaið½SrInrT� þ ½IrInrT�
þ ½TInrT�Þ þ kMFmikMFð½Sr� þ ½Ir � þ ½T�Þ½InrT�=N

þ kGGið½Inr�; ½Ir�Þ½InrT� þ c½IrInr � þ crr ½IrIr� � crr½IrT�
� r½IrT� þ kCai½InrT� � di½IrT� þx½InrT�; ð33Þ

_½TT� ¼ 2c½InrT� þ 2crr ½IrT� � 2r½TT�: ð34Þ
where N = Snr + Sr + Inr + Ir + T is the population size. The mean-field
type transmission is implemented based on ideas proposed by
Eames [6]. The routes of responsiveness transmission can be
switched on and off or can be combined using kC,kMF and kG which
are set to 0 or 1 accordingly. For our purposes we set
Gsð½Inr�; ½Ir�Þ ¼ Gið½Inr�; ½Ir �Þ ¼
dð½Inr� þ ½Ir�Þn

K þ ð½Inr� þ ½Ir�Þn
: ð35Þ
In this paper, n = 1 at all times. To integrate the equations numeri-
cally, we use the classic closure proposed in [18]. This amounts to
approximating all triples in terms of singles and pairs with the gen-
eral closure relation given by

½ABC� ¼ hki � 1
hki

½AB�½BC�
½B� :

This approximation closes the system and numerical integration
can be performed. Parameter values are based on those used in
[20] but with units changed from weeks to years. For simplicity
we assume that as = ai = a, ds = di = d and ds = di = d.
Appendix B. List of all possible transitions and their probability

From Figs. 5 and 6(a), it is easy to note that only the following
transitions are possible,

A! B;B! fA;Dg;C ! fA;Dg and D! fB;Cg; ð36Þ

with the probability of transitions given by
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rAB ¼
x

cnr þxþ s
; ð37Þ

rBA ¼
d

sri þ aþ dþ cr
; rBD ¼

a
sri þ aþ dþ cr

; ð38Þ

rCA ¼
d

cnr þxþ aþ srs þ d
; rCD ¼

aþx
cnr þxþ aþ srs þ d

; ð39Þ

rDB ¼
d

cr þ 2dþ srsri
; rDC ¼

d
cr þ 2dþ srsri

: ð40Þ
Appendix C. Solving linear recurrence equations

Simultaneous recurrence equations can be solved using simple
linear algebra arguments. Below we give a general result for k
equations followed by the full analytic solution for two equations
as needed for the Rd

0 calculations.

Proposition 1. Let A be a k � k diagonalisable matrix. Hence, there is
an invertible matrix P, such that

P�1AP ¼

k1 0 0 0
0 k2 0 0

0 0 . .
.

0
0 0 0 kk

;

0
BBBB@

1
CCCCA

where ki, i = 1, 2, . . .k are the eigenvalues of A, and assume that jkij < 1
for all i = 1, 2, . . .k. Let x(n) be defined by

xðnþ 1Þ ¼ AxðnÞ; xð0Þ ¼ x0 2 Rk:

Then

X1
n¼0

xðnÞ ¼ PDP�1x0; ð41Þ

where D is a diagonal matrix with diagonal elements Dii ¼ 1
1�ki

for all
i = 1, 2, . . .k.
Proof. It follows immediately that (P�1AP)n = P�1AnP. Hence,
An = P(P�1AP)nP�1 = PKnP�1, where Kn is a diagonal matrix with
diagonal elements Kii ¼ kn

i , where i = 1, 2, . . . k and n = 0, 1, 2, . . . .
Therefore,

P1
n¼0Kn ¼ D. Thus we obtain

X1
n¼0

xðnÞ ¼
X1
n¼0

Anx0 ¼
X1
n¼0

PKnP�1x0 ¼ P
X1
n¼0

Kn

 !
P�1x0

¼ PDP�1x0: �

Let us now apply the above result for a 2 � 2 matrix

A ¼
a11 a12

a21 a22

� �
:

The following two statements can by verified by elementary calcu-
lations. The matrix is diagonalisable if and only if

ða11 � a22Þ2 þ 4a12a21 ¼ 0 implies a12 ¼ a21 ¼ 0: ð42Þ

The eigenvalues of matrix A are within the unit circle (i.e. jkij < 1 for
i = 1,2) if and only if

jTrAj � 1 < det A < 1: ð43Þ

Hence the following proposition holds,

Proposition 2. For a 2 � 2 matrix A which satisfies conditions (42)
and (43), the following equation holds,

X1
n¼0

xðnÞ ¼ 1
1� TrAþ det A

1� a22 a12

a21 1� a11

� �
x0: ð44Þ
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Proof. Let us denote the eigenvalues of A by k1, k2 and the eigen-
vectors by u and v. Then P contains u and v as column vectors:
P = (uv), and the eigenvectors can be expressed as

u ¼ ða12; k1 � a11ÞT ; v ¼ ða12; k2 � a11ÞT :

Then

P ¼
a12 a12

k1 � a11 k2 � a11

� �
; P�1 ¼ 1

a12ðk2 � k1Þ
k2 � a11 �a12

�k1 þ a11 a12

� �

After some algebra, and using that k1 + k2 = TrA and k1k2 = detA, the
following identity holds,

PDP�1 ¼ 1
1� TrAþ det A

1� a22 a12

a21 1� a11

� �
: �

Using the above Proposition in the case of x0 ¼ ðx0
1; x

0
2Þ

T , the first and
second coordinate of x(n) are given by

X1
n¼0

x1ðnÞ ¼
ð1� a22Þx0

1 þ a12x0
2

1� TrAþ det A
; ð45Þ

X1
n¼0

x2ðnÞ ¼
a21x0

1 þ ð1� a11Þx0
2

1� TrAþ det A
: ð46Þ

Hence, for x0 = (1,0)T and x0 = (0,1)T, the first and second coordi-
nate of x(n) are given by

X1
n¼0

x1ðnÞ ¼
1� a22

1� TrAþ det A
; ð47Þ

X1
n¼0

x2ðnÞ ¼
a21

1� TrAþ det A
ð48Þ

and

X1
n¼0

x1ðnÞ ¼
a12

1� TrAþ det A
; ð49Þ

X1
n¼0

x2ðnÞ ¼
1� a11

1� TrAþ det A
: ð50Þ
Appendix D. Calculations for trees starting with pair (Snr, Ir),
(Sr, Inr) and (Sr, Ir)

Here the same techniques that were used to derive the tree for
(Snr, Inr) are used for the other three combinations of S and I
individuals.

D.1. Tree starting with pair (Snr, Ir)

This tree is easy to create and the same observations as before
apply. In particular, B and/or C only appear in every even genera-
tion while A and D are present in every odd one. Hence, the coupled
recurrence equations are given by

bBðnþ 1Þ ¼ rB
BBbBðnÞ þ rB

CBcBðnÞ; ð51Þ
cBðnþ 1Þ ¼ rB

BCbBðnÞ þ rB
CCcBðnÞ; ð52Þ

with initial condition (bB(0), cB(0)) = (1,0), where rB
BB ¼

rBArAB þ rBDrDB; rB
BC ¼ rBDrDC ; rB

CB ¼ rCArAB þ rCDrDB and rB
CC ¼ rCDrDC .

Using Eqs. (47) and (48) developed in Appendix C gives

PB
B ¼

1� rB
CC

1� rB
BB þ rB

CC

� �
þ rB

BBrB
CC � rB

BCrB
CB

;

PB
C ¼

rB
BC

1� rB
BB þ rB

CC

� �
þ rB

BBrB
CC � rB

BCrB
CB

: ð53Þ
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Given that each B generates an A and a D with probability rBA and
rBD, and that each C generates an A and two Ds with probability
rCA and rCD, it follows that

PB
A ¼ PB

BrBA þ PB
CrCA; P

B
D ¼ PB

BrBD þ PB
CrCD: ð54Þ

Therefore the probability of an infection from an (Snr, Ir) pair is

PððSnr; IrÞÞ ¼
X

X2fA;B;C;Dg
pinf

X PB
X : ð55Þ
D.2. Tree starting with pair (Sr, Inr)

Working out P((Sr, Inr)) follows a similar line of thought and
starts by generating a tree beginning with C. Exactly the same
observations as above hold (i.e. B and/or C only appear in every
even generation while A and D are present in every odd one). Using
the same approach as above the coupled recurrence equations now
read as

bCðnþ 1Þ ¼ rC
BBbCðnÞ þ rC

CBcCðnÞ; ð56Þ
cCðnþ 1Þ ¼ rC

BCbCðnÞ þ rC
CCcCðnÞ; ð57Þ

with initial condition (bC(0),cC(0)) = (0,1), where rC
BB ¼ rBArABþ

rBDrDB; rC
BC ¼ rBDrDC ; rC

CB ¼ rCArAB þ rCDrDB and rC
CC ¼ rCDrDC . Using Eqs.

(49) and (50) developed in Appendix C gives

PC
B ¼

rC
CB

1� rC
BB þ rC

CC

� �
þ rC

BBrC
CC � rC

BCrC
CB

;

PC
C ¼

1� rC
BB

1� rC
BB þ rC

CC

� �
þ rC

BBrC
CC � rC

BCrC
CB

: ð58Þ

Given that each B generates an A and a D with probability rBA and
rBD, and that each C generates an A and two Ds with probability
rCA and rCD, it follows that

PC
A ¼ PC

BrBA þ PC
CrCA; P

C
D ¼ PC

BrBD þ PC
CrCD: ð59Þ

Therefore the probability of an infection from an (Sr, Inr) pair is

PððSr ; InrÞÞ ¼
X

X2fA;B;C;Dg
pinf

X PC
X : ð60Þ
D.3. Tree starting with pair (Sr, Ir)

The calculations P((Sr, Ir)) are identical and rely on the same
technique of generating a new tree starting with pair D. Once this
is done, the coupled recurrence equations are given by

aDðnþ 1Þ ¼ rD
AAaDðnÞ þ rD

DAdDðnÞ; ð61Þ
dDðnþ 1Þ ¼ rD

ADaDðnÞ þ rD
DDdDðnÞ; ð62Þ

with initial condition (aD(0),dD(0)) = (0,1), where rD
AA ¼ rABrBA; rD

AD ¼
rABrBD; rD

DA ¼ rDBrBA þ rDCrCA and rD
DD ¼ rDBrBD þ rDCrCD. Using Eqs. (49)

and (50) developed in Appendix C gives

PD
A ¼

rD
DA

1� rD
AA þ rD

DD

� �
þ rD

AArD
DD � rD

ADrD
DA

;

PD
D ¼

1� rD
AA

1� rD
AA þ rD

DD

� �
þ rD

AArD
DD � rD

ADrD
DA

: ð63Þ

Given that each A generates a B with probability rAB and that each D
generates a B and a C with probability rDB and rDC, it follows that

PD
B ¼ PD

A rAB þ PD
DrDB; P

D
C ¼ PD

DrDC : ð64Þ

Therefore the probability of an infection from an (Sr, Ir) pair is

PððSr ; IrÞÞ ¼
X

X2fA;B;C;Dg
pinf

X PD
X : ð65Þ
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