Mapping out emerging network structures in
dynamic network models coupled with epidemics
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Abstract We consider the susceptible - infected - susceptible (SIS) epidemic on
a dynamic network model with addition and deletion of links depending on node
status. We analyse the resulting pairwise model using classical bifurcation theory
to map out the spectrum of all possible epidemic behaviours. However, the ma-
jor focus of the chapter is on the evolution and possible equilibria of the resulting
networks. Whereas most studies are driven by determining system-level outcomes,
e.g., whether the epidemic dies out or becomes endemic, with little regard for the
emerging network structure, here, we want to buck this trend by augmenting the
system-level results with mapping out of the structure and properties of the result-
ing networks. We find that depending on parameter values the network can become
disconnected and show bistable-like behaviour whereas the endemic steady state
sees the emergence of networks with qualitatively different degree distributions. In
particular, we observe de-phased oscillations of both prevalence and network degree
during which there is role reversal between the level and nature of the connectivity
of susceptible and infected nodes. We conclude with an attempt at describing what
a potential bifurcation theory for networks would look like.
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1 Introduction

Networks have been and remain extremely useful in modelling complex systems.
Their use has led to rapid progress in the study of stochastic spreading pro-
cesses such as information, rumour and epidemics. The role of contact heterogene-
ity, preferential mixing and (to a lesser extent) of clustering is now well under-
stood [3, 17, 11]. Mean-field models ranging from heterogenous mean-field [17],
pairwise [10, 5, 9] and effective-degree [13, 1] to edge-based compartmental models
[16, 15] have proved crucial in circumventing the technical analysis of the underly-
ing stochastic process. This shifts the focus onto the analysis of low-dimensional
systems of ordinary differential equations, where variables are system-level ex-
pected values such as the the number of nodes and edges of different statuses.

Attempting to account for more realistic features of spreading processes (e.g.,
non-exponentially-distributed waiting times) or networks (e.g., clustered and/or
with higher-order structure, time-varying or embedded in some space) leads to mod-
els that are more complex, harder to analyse and less transparent. Indeed, this typi-
cally requires (i) more complex network models, including a better understanding of
the properties of empirical networks, or (ii) the derivation of new or refined mean-
field models which may require sophisticated mathematical tools or techniques.

In this chapter we focus on the latter and consider a model where the epidemic
dynamics on the network is coupled with a network which evolves in time. Several
studies have already made important observations regarding how coupling the dy-
namics on the network with that of the network may change or enrich the outcome
of the epidemic. For example, [7] showed that for a rewiring process that preserved
the number of links (“link number-preserving”) where susceptible nodes cut links to
infected nodes and instantaneously reconnect to a random susceptible node, can lead
to oscillations, albeit over a very narrow area of the parameter space [8]. This model
was later refined and extended either by considering a different rewiring mechanism
(e.g., non link-preserving rewiring but still dependent on link status [22, 24, 25, 19])
or by modelling the same process but with more sophisticated models such as the
effective degree [14]. For reviews on this topic, we refer the reader to [6, 20].

Such dynamic or adaptive networks present several challenges in that usually the
resulting mean-field models are of a higher dimension than the static network equiv-
alent. In many cases, this is explained by the fact that closures now involve dynamic
or time-varying quantities (e.g., the average degree of the network) that need to be
tracked via their own equations. But perhaps more important is the fact such cou-
pled dynamics lead to correlations that usually violate the assumptions behind even
the more complex closures. Still, mean-field models have an important role to play
in providing a qualitative picture of the different behaviours of the system, and to
guide a more rigorous analysis.

Despite ongoing progress in model refinement and accounting for more realistic
scenarios of dynamic contact structures, very few studies focus on understanding
and mapping out the structure of the emerging networks. While there is detailed
information about when an epidemic dies out, there is value in knowing whether
the epidemic died out due to the network being poorly connected or due to an un-
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favourable ratio of infection to recovery rates despite the network being well con-
nected. Other important insights may come from knowing whether the fluctuations
in prevelance can lead to fluctuation in average degree of the network, whether the
network can fall apart into disjointed components isolating the infection; or, finally,
what the degree distribution will be at the endemic equilibrium or during oscillations
in prevalence. In this chapter we set out to map out the structure of the emerging net-
works for an SIS epidemic coupled with a link status-dependent link addition and
deletion model, where existing links are deleted and new links are created depending
on the disease status of the nodes that these links connect.

The chapter is structured as follows. After formulating the model in Section 2,
we provide a bifurcation analysis of the simple pairwise model describing the cou-
pled epidemic and dynamic network model in Section 3. Section 4 is dedicated to
mapping out the emerging network structure by using the compact pairwise model
which tracks the degree of the nodes and by relying on explicit stochastic network
simulations. We conclude with a discussion of our results identifying open questions
and new directions for further research.

2 Model formulation

This chapter considers SIS (susceptible-infected-susceptible) epidemic propagation
on an adaptive network with link status-dependent link activation and deletion.
Specifically, the model incorporates the following independent Poisson processes:

o Infection: Infection is transmitted across each contact between an / and an S
node, or (I —S) link, at rate ,

e Recovery: Each I node recovers (becoming an S node) at rate ¥ independently
of the network,

e Link activation: A non-existing link between a node of status A and another of
status B is activated at rate oyp, with A, B € {S,1},

e Link deletion: An existing link between a node of status A and another of status
B is terminated at rate wup, with A,B € {S,1}.

This model is significantly different from ‘smart’ rewiring [6], where S nodes have
full knowledge of the status of all other nodes and choose to minimise their exposure
to infection by cutting links to I neighbours and immediately rewiring to a randomly
chosen S node. This latter approach conserves the number of links in the network
and simplifies the analysis of the resulting system, by not having to consider an
evolving average degree.

Here, we set out to explore and explain the spectrum of system behaviours with
special focus on understanding and mapping the evolution of the network structure
and attainable network equilibria. The first task is carried out via classical bifur-
cation analysis at system level and focuses on identifying regimes such as die-out,
endemic equilibria and oscillations.
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In order to do this, we will employ a number of approaches including: (i) two dif-
ferent types of pairwise or pair-based mean-field ODE models, and (ii) full network-
based stochastic simulation. Regarding the rewiring parameters we focus on two
scenarios, namely:

A. g = oy = oss = o and sy = Wy = Wss = @, and
B. Os; = O = 0 and Oss 75 0, and Wy = Wss = 0 and sy 75 0.

While the first is link status-independent and leads to simpler and more tractable
models, the second is motivated by practical considerations, such as those used in
the ‘smart’ rewiring — where nodes aim to minimise the risk of becoming infected
while maintaining their connectivity to the network.
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Fig. 1: A flow diagram leading to system (l). (top) The relevant flows for the
individual-level variables. The solid line denotes an infection, while the sinuous
line denotes a recovery. The rate of new infecteds depends on [S7], and so we re-
quire pair-level variables. (bottom) The relevant flows for the pair-level variables.
The colours denote the status of the “first” node in the edge. The solid lines denote
infections, the sinuous lines denote recoveries, and the dashed lines denote addition
or removal of edges. Some of the infection events involve triples, and so we need
triple-level variables or a closure.
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We start by formulating the pairwise model for the expected number of nodes
and pairs of different statuses. As was shown in [12], this gives rise to

(1] = <[S1) - 1], (1a)
[ST] = (1] — [ST]) + ©([SST] — [ISI) — [S1]) + ets; ([S][1] — [S1]) — @st[ST],  (1b)
(1) = =2y[11) + 23 ([IS1) + [S1]) + oz ([1)([1) = 1) = [11]) — oy [11], (lc)
[SS] = 2v[SI) — 27[SST] + ass ([S]([S] — 1) — [SS]) — wss[SS]. (1d)

These equations can be interpreted using Fig. |. The basic idea of pairwise models is
to derive evolution equations for the expected number of nodes of different statuses,
i.e., [X] where X € {S,I}. However, looking at the evolution equation of [/], see
equation (1a), we note that this depends on the expected number of [SI] pairs, and
hence equations for this and other pairs, e.g., [SS] and [I]], are also needed. The
evolution equations of pairs will then depend on the expected number of triples with
nodes of certain statuses, i.e., [SSI] and [IS]]. This leads to a hierarchical dependence
of pairs on triples and then of triples on quadruples, and so on. This is obviously
not practical due to the combinatorial explosion in number of equations. Hence, a
closure is needed which in this case approximates triples in terms of singles and
pairs. From the model it follows that [S] + [I] = N, and that the closure requires the
time-dependent expected average degree of S nodes. This is given by

ks(t) = [SS][;][S” @
The well-known closure [10] is used, namely
_ (ks —1)[SS][s1] _ (ks —1)[SI][S1]
[SSI] = T[S} and [ISI] = T{S] 3)

Upon applying these closures, a self-consistent system with 4 ODEs is obtained.
This can be analysed using classical bifurcation theory techniques.

It is worth noting that the pairwise model above makes some implicit assump-
tions. First, it assumes that pairs and triples are counted multiple times. This for
example implies that [SI] = [IS] and that [SS] stands for twice the number of singly
counted edges connecting susceptible nodes. Similarly, [/S/] is a multiple count of
arrangements such as nodes i, j and k, with susceptible node j being connected to
infected nodes i and k. Second, our model does not explicitly account for the degree
of nodes and thus degree-degree correlations are omitted. Finally, we note that clo-
sures use the time-dependent excess degree of susceptible nodes, kg(¢), rather than
the average degree of the network, (k), as it is done for static network models.
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3 Bifurcation analysis of the epidemic

3.1 Bifurcation analysis of the system behaviour for scenario A

Turning to scenario A, i.e., the case in which edges are added or removed indepen-
dently of node status (055 = 05y = 04y := o and Wss = Ws; = Wy := O), we deter-
mine the steady states and the local behaviour around them. In [12] it was shown
that the network becomes an Erdés-Rényi type random graph at the steady state and

the probability an edge is active is p = aiiw So the average degree at equilibrium is
(04
ky=(N-1
=N -1)-%
In this case the coordinates of the disease-free steady state are [I] = 0, [SI] =0,
[II] =0and [SS] = 1\/(57:“)0!_ The Jacobian matrix corresponding to this steady state
is
-y T 0 0
T oN T((k)—2)—a—y—® Y 0
o —o 27 2y—a—-w 0 ’
o(=2N+1) 2y—27(k)—1) 0 —-a—

Solving the equation detJ = 0 for 7 shows that a transcritical bifurcation occurs at

Y27+ o+ @)

T AN 2k — 1)’ @)

which is derived in [23]. Numerical investigation shows that for 7 < 7, the solutions
of the system tend to the disease-free steady state, while for T > 7, the solutions
converge to the endemic steady state. Oscillations were not observed in this case,
see [23].

An approximation to this bifurcation curve can be determined by theoretical
considerations. The simplest way of approximating the transcritical bifurcation
curve, which separates the endemic and disease-free regions, is to start from the
steady state equation t[SI] = y[I] and make an additional assumption (the pair
closure) [S1] =~ %[S] [1]. Substituting this into the steady state equation with
(k) = Na/ (ot + o), then dividing by [I] and substituting [S] = N, which holds at
the boundary of the endemic region, we arrive at

o+
Tpc - }/Wa
where the subscript ‘pc’ denotes pairwise closure. This bifurcation curve and that
given by the pairwise model, see (4), are shown in Fig. 2. As expected the agreement
is only partial since the pairwise model provides a more accurate approximation of
the true stochastic model.
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Fig. 2: Four behaviours observed in simulations of scenario A in the (7,®) pa-
rameter space and the theoretical bifurcation curves for o« = 0.01, N = 200, y = 1.
The horizontal line (dash-dotted line) represents the boundary of the parameter do-
main where the graph transitions from connected to disconnected. In the simulation,
networks which on average had at least 3 disjointed components were considered
disconnected. The other two curves are the transcritical bifurcation curves obtained
from the mean-field approximation (continuous diagonal line) and from the pair-
wise approximation (4) (dashed line). The markers are as follows: x - connected,
epidemic, x - connected, no epidemic, o - disconnected, epidemic, and o - discon-
nected, no epidemic.

3.2 Bifurcation analysis of the system behaviour for scenario B

Focusing on scenario B, the system admits two equilibria: (a) a disease-free equilib-
rium ([S], [1], [S1], [I1],[SS]) = (N,0,0,0,N(N — 1)) and (ii) an endemic equilibrium
which emerges from the solution of a quartic equation.

The linearisation around the disease-free steady state gives rise to a 4 x 4 Jaco-
bian, the eigenvalues of which can be determined explicitly, see Appendix A in [24].
As shown, two of the eigenvalues are always negative and the remaining two have
negative real part if and only if

s > T(N—2)—7, 5)

which gives rise to a transcritical bifurcation where ws; = T(N — 2) — v, see Fig.
Thus the following Proposition holds.

Proposition 1 The disease-free steady state is stable if and only if wg; > T(N —2) —
Y
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As mentioned above the endemic steady state is the solution of a quartic equa-
tion, see [24] for its detailed derivation. The analysis of this equation leads to the
following proposition concerning the existence of the endemic steady state.

Proposition 2 If [S] = x € (0,N) is a root of polynomial
X+ A3 + A + A x+ A =0, (6)
with
Az =4ab—3—-2b—c,
Ay =24 2b+ ¢+ b* + be — 6ab — 4ab* — 2abc + 4a*b* + Nb(1 — 4a),

Ay = Nb(—1+6a—b— c+6ab+ 2ac — 8a*b),
Ao = 2N%ab*(1 —2a),

where a = %, b=~<andc= %, then the system has an endemic steady state, the
coordinates of which can be given as

Slss=x, [Us=N—x, [Sls=

sy
[SS]SS:x(x—l)—2%(N—x), e = = ISl S

Extensive numerical tests suggest that the quartic polynomial has a single root pro-
viding a biologically plausible steady state. This means that below the transcritical
bifurcation there is a unique endemic steady state. That is for a fixed value of 7,
there is a critical cutting rate a)§,’” such that the unique endemic steady state exists
if and only if wg; < @G = T(N—2) —7.

Similarly, the stability of the endemic steady state can only be computed numer-
ically by evaluating the coefficients of the characteristic polynomial. However, this
does not prevent us from mapping out where the Hopf bifurcation arises (see Ap-
pendix A in [24] for details). It has been shown that the Hopf bifurcation points
carve out an island from the parameter space, as shown in Fig. 3, within which
the prevalence exhibits stable oscillations. Hence, the region below the transcritical
bifurcation line and outside the Hopf island is where the endemic equilibrium is sta-
ble. It is important to note that the system-level analysis can be complemented by
the observation that the expected average degree displays a behaviour similar to that
of the expected number of infected nodes, as illustrated by the top panel of Fig.
but produced using the compact pairwise model.
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Fig. 3: Bifurcation diagram for the pairwise ODE model for scenario B in the
(T, wsy) parameter space for N = 200, v = 1 and ogs = 0.04. The transcritical bi-
furcation occurs along the dashed line, and the Hopf bifurcation occurs along the
perimeter of the island.

4 Network bifurcation

While some studies of adaptive or dynamic networks do consider and analyse
changes in network structure [7, 14, 25], there are many papers which only fo-
cus on disease-related quantities such as the prevalence of infection with the aim to
characterise those via bifurcation analysis.

However, it has been observed that the networks themselves can also undergo
significant changes in time depending on parameters. For example, Gross et al. [7]
reported segregation of networks into different components, see Fig. 7 also. Such
analysis can reveal important network features which can invalidate the use of mean-
field or pairwise models and, more importantly, may reveal the true impact of the
interplay between dynamics on and of the network on changes in the underlying
networks and the range of emerging networks.

Emergence of network structure from such dynamic network models could also
be interpreted as a more natural or organic form of emergence of structure, compared
to that observed in artificial or synthetic network models. In what follows we aim to
couple the analysis of system- and network-level changes, in order to concurrently
reveal the spectrum of behaviours at all levels, i.e., both system and network.
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4.1 Mapping the emerging network structure onto the system-level
bifurcation picture for scenario A

In the case of scenario A, that is, when ag; = oy = Ogs := o, and @O = Wss =
sy := ® a more complete characterisation of network bifurcations can be achieved.
As suggested by the pairwise model, two behaviours may occur according to the
long time prevalence level, namely disease-free or endemic steady state. As regards
the network structure we studied the connectivity (through determining the type and
number of connected components) of the network and its degree distribution. Our
goal here is to map out system and network behaviour over the (7, ®) parameter
space. We consider several stochastic simulations at each lattice point in the (7, ®)
parameter plane. The average epidemic level and network connectivity are then de-
termined at the steady state (after a sufficiently long time). The different system and
network level outcomes yield four different behaviours shown in Fig 2. The most
interesting observation is that epidemics can be curtailed either because the network
gets disconnected or because the epidemic is sub-threshold even though the network
could theoretically support an epidemic.

The bifurcation curve separating the connected and disconnected regions can be
derived analytically as follows. We have noted that at the steady-state this network is

an Erd6s—Rényi graph, with p = aj%w, and we know that the threshold for an Erd&s-
Rényi graph being disconnected is p = % [2, 4], where N denotes the number of

nodes. Taking into account these two formulas we get the following equation,

o _1nN
T o+ N

p

Thus the critical threshold for connectivity is,

s (N
) _a<lnN 1>. @)

The horizontal line in Fig. 2 is drawn at this value of ®, see also [23]. There is
good agreement with the connectivity results obtained from simulation. Moreover,
as expected, the degree distribution of networks during and at the end of simulations
is well described by the binomial distribution and for fixed values of ¢, the number
of components increases sharply with larger values of @. This is quite natural since
a higher cutting rate reduces the capacity of the epidemic to spread and thus the
number of infected nodes. However, this leaves many susceptible nodes which will
become more densely connected due to the addition of new S — § links.

From system (1) and using scenario A it also follows that the number of (doubly-
counted) edges in the network, E(¢) = [SS](¢) + [II](¢) 4 2[SI] (), satisfies

E=a(N(N-1)—E)— oE (8)

with its steady state being given by
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_ aN(N—1)
a4

€))

eq

and with the average degree at equilibrium being k., = % = ag\fwl) . This also fol-
lows from the simple heuristic argument that at equilibrium the rate at which edges
are cut is equal to the rate at which edges are created, i.e., WE.; = a¢(N(N —1) —

Ee).

4.2 Mapping the emerging network structure onto the system-level
bifurcation picture for scenario B

We now consider the more realistic case of a link status-dependent link addition
and deletion model. While the system-level characterisation (i.e. focusing on the
analysis of the pairwise model from the viewpoint of the outcome of the epidemic,
without explicitly considering the underlying dynamic network) is not trivial, one
can use classical bifurcation theory techniques even if some calculations can only
be performed numerically. In [24] it was shown that the agreement between the
pairwise model and simulation is mainly qualitative, insofar as the pairwise model
predicts the observed outcomes but the size and boundaries of the different regimes
in the parameter space differ between pairwise and simulation-based models. This
is the result of the sub-optimal performance of closures which fail to capture the
heterogeneity in degree distribution as well as, and perhaps more importantly, the
presence of correlations introduced by the link status-dependent creation and dele-
tion. These factors lead to the breakdown of closures. In addition, we shall show
that the underlying network can become disconnected which further degrades the
performance of the closures.

A detailed analysis of emerging network structures is made even more challeng-
ing by the need to rely on (i) different variants of pairwise models (tracking versus
not tracking the degree of nodes), and (ii) explicit stochastic network-based simula-
tion, sometimes on small networks to gain intuition. The former is useful to provide
a rough guide of the possible behaviours and to identify broad parameter regions
leading to networks of different type, such as connected versus disconnected, de-
gree distributions that change throughout the oscillation cycle.

Analysing emerging networks using mean-field models

Let us progressively move from the simplest towards the most complex mean-field
model and explore what information we can gain about the structure of the emerg-
ing networks. Starting with the pairwise model (1) one can ascertain at least the
behaviour of the average degree over time. Thus, we can explore whether the av-
erage degree will stabilise or oscillate, and determine how these two regimes will
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partition the parameter space considered in the bifurcation diagram at system-level
shown in Fig.

In Fig. 4 we show a contour plot of the average degree and we track the amplitude
of oscillations of the average degree along an isoline where the mean average degree
over an oscillatory cycle is constant. This figure reveals that the resulting networks
exhibit a wide range of average degree values. Two important observations can be
made. First, we note that for a fixed value of 7 and as the cutting rate increases, the
average degree at equilibrium (or its mean over one cycle) tends to higher values.
This is due to the cutting of S — I links which reduces the impact of the epidemic
and leads to fewer infected nodes. This in turn leads to more susceptible nodes such
that the addition of new S — § links is fast and increases the average degree. Second,
we note regions in which a form of bistability exists (see inset in the left panel of
Fig. 4). Namely, the same average degree can be achieved for the same value of
the transmission rate T but two distinct values of wg;. This can be explained by
considering the prevalence level (not shown) which, as intuition suggests, will be
lower for higher values of the cutting rate and much higher for smaller values of
s;. Thus, networks with the same average degree and transmission rate can sustain
either higher prevalence with a lower cutting rate or lower prevalence with a higher
cutting rate.

~ 80
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Fig. 4: (Left-panel) Contour plot of the average degree (or mean average degree over
one cycle of oscillation when oscillations are stable) overlaid on the system-level bi-
furcation diagram. The inset provides a zoomed-in version of the bottom-left corner
of the main plot to reveal the fine structure at low @ and 7 values. (Right-panel)
The amplitude of the oscillations of the average degree when travelling through the
Hopf island along the isoline where the mean average degree is (k) = 50. Parameter
values are N = 200, y =1, ogs = 0.04.

The amplitude of the oscillations of the average degree in Fig. 4 confirms our ex-
pectations by showing that the amplitude tends to zero at the boundaries of the Hopf
island and grows considerably when moving away from the boundary separating the
stable endemic equilibrium and the oscillatory regime.
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It is obvious that the previous model offers no information about how links are
distributed over nodes, and thus about the degree distribution. To improve on this
and get a basic description of the behaviour of the degree distribution one can write
down a more complete set of pairwise equations that track the degree of nodes. Epi-
demics on networks with heterogeneous degrees can be described by heterogeneous
mean-field models [5]. However, the number of equations in such models is of order
O(N?) since the degree in a dynamic network can, in principle, vary between 0 and
N — 1, where N is the number of nodes in the network. As a trade-off between keep-
ing degree heterogeneity and having a tractable system of ODEs, so-called compact
pairwise models have been introduced [9]. The variables of this model are [Sy] and
[;] representing the average number of susceptible and infected nodes of degree k,
respectively, and the average number of pairs [S1], [SS] and [/1]. We make use of the
approximation

k[Ag]

i)
where [A(B] = ¥;[AiB,]. In fact, the pairs [A;B,] are not needed in the compact
pairwise model, and only pairs of the form [A;B] are used, significantly reducing
the number of equations. We extend this model with terms accounting for link addi-
tion/creation and deletion as follows. The deletion of links connecting an infected to
a susceptible node with degree k at rate @g; contributes positively to [Sy_;]| and neg-
atively to [Si]. The creation of links connecting a susceptible to another susceptible
node with degree k contributes negatively to [Si] with rate otss([Sk]([S]—1) — [SkS])
because the total number of such possible links is [S]([S] — 1) and the number of ex-
isting links is [SS]. The same process contributes positively to [Sg1]. Using similar
arguments we arrive at the following system,

[AxB] = [AB]

(10)

(S = —[Sed] + Y] + @i ([Sk11) — [Sed]) (11a)
+ atss ([Sk—1]([S] = 1) — [Sk—15]) — atss ([Se] ([S] — 1) — [SS]),

(1) = T[Skl] — YlI) + @s1 ([Te15] — [1S)), (11b)

[ST) = y([11] — [SI]) + ([SS1] — [ISI] — [SI]) — cws; [S1], (11c)

(1) = —29[11) 4 2t ([ISI] + [S1)), (11d)

[SS] = 29[SI] — 27[SSI] + ass ([S]([S] — 1) — [S5]), (11e)

where [S] = ¥4 [Sk]. The approximation in Eq. (10) is used to compute the pairs [Sy/]
and [[;.S] for k =0,1,...,N — 1, and according to [9], the triples are closed by

~[AS][sT] B
[ASI] = (SENEIE Zk:k(k 1)[Si].

Preliminary numerical investigations reveal that this compact model produces better
qualitative agreement with results from simulation than the standard pairwise model.
And although this agreement is not optimal, the model offers further value through
providing qualitative insights into the behaviour of the degree distribution in time or
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at equilibrium. A detailed study of the compact pairwise model is beyond the scope
of the present paper, but below we present some output from this model with special
focus on elucidating the types of networks that are likely to emerge.

We start by reporting on the behaviour of networks when the endemic steady
state is stable. In Fig. 5 the degree distributions (shown as a non-normalised degree
histogram here and in all subsequent figures) of the whole network and those of
susceptible and infected nodes separately are plotted. This reveals that the emerging
networks can vary both in their degree distribution and average degree. The most
striking difference is the propensity of the infected nodes to become isolated com-
pared to susceptible nodes. This effect is exacerbated in the left panel of Fig. 5. On
the one hand, the network dynamics removes S — I links thus reducing the num-
ber of edges originating from infected nodes. On the other hand, the network is
replenished with § — § links and these nodes enjoy and share more links compared
to infected ones. In the true network-based stochastic simulation model this effect,
for the right parameter combinations, can lead to complete isolation of the infected
nodes through being cut off from the rest of the network, leading to the whole pro-
cess being eventually attracted to the absorbing state with no infected nodes and all
possible links present.
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Fig. 5: Degree distributions (shown as a non-normalised degree histogram here and
in all subsequent figures) of the susceptible (0), infected (¢), and the whole net-
work (o) at the endemic steady state using the compact pairwise model (! 1). The
parameter values are N = 200, ¥ = 1, and ogs = 0.04 with (left-panel) 7 = 0.2 and
sy = 1.5, and (right-panel) T = 4 and ws; = 100.

Let us now focus on the oscillatory regime within the Hopf island. In the top
panel of Fig. 6 we show a typical plot of the time evolution of both prevalence
and average degree. We note that these oscillations go hand in hand but are out
of phase. At high average degree the prevalence is typically small meaning that the
network has many susceptible nodes that become more and more densely connected.
However, as soon as infection manages to invade from the fringe of this tightly
connected cluster of susceptible nodes, the epidemic spreads and the prevalence
grows. As the number of infected nodes increases so does that of the S — I links.
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The link removal becomes significant and slows the epidemic due to fewer links
being available for transmission.

The middle panel of Fig. 6 shows the typical degree distribution at the peak and
trough of the degree oscillation. Again, as explained above, we notice that at the
trough, when the average degree attains its minimum, the number of nodes with no
or few connections increases significantly. As shown in the bottom two panels of
the same figure, it is mainly the infected nodes that suffer the consequences of the
link cutting process and these nodes lose many of their links leaving them with no
or very few connections. In contrast, the susceptible nodes are more resilient and
their degree distribution shows less dramatic change between peak and trough.
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Fig. 6: Illustration of the oscillatory behaviour in the expected prevalence and aver-
age degree (the curve with the markers) based on the compact pairwise model (1 1)
(top panel). Prevalence and average degree are out of phase with the network be-
ing most densely connected when the prevalence of infection is low and vice-versa.
The degree distribution at the peak (o) and trough (¢) of the oscillatory cycle of the
average degree (middle panel) shows that the network loses links and more poorly
connected nodes emerge with the entire degree distribution moving towards lower
degrees. The degree distribution of susceptible and infected nodes (bottom panel)
reveal that infected nodes are in general poorly connected due to the cutting of S —/
links. Parameter values are: N =200, 7 = 0.4, y =1, ags = 0.04 and ws; = 25.
We note that the oscillations eventually stabilise with a well defined amplitude and
cycle duration.
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Analysing emerging networks using simulation

Finally, we present some results from rigorous network-based stochastic simulations
using the Gillespie algorithm. Before we turn to the analysis of the output we recall
some of the nuances of the comparison between mean-field and simulation models.
First, it is well known that the worst performance of the mean-field models is usu-
ally when the system operates close to threshold, i.e., at the point separating die-out
from an epidemic. Moreover, during oscillations that come close to extinction (i.e.,
a system with a small number of infected nodes), agreement with the mean-field
models is also expected to break down. Typically in such cases, the stochastic pro-
cess can be absorbed by the all-susceptible state, while the mean-field models will
indicate oscillations.

In what follows we focus on the oscillatory regime and map out how both sys-
tem and network behave during one cycle of oscillation. First, we note that the
de-phasing between prevalence and average degree is not as clear as for the deter-
ministic model, see Fig. 7. However, the trend is similar in that the average degree
peaks before the epidemic peaks. Our analysis here is based on peaks and troughs
in prevalence rather than average degree, as per the mean-field case. This is purely
because oscillations in prevalence had a bigger amplitude and thus were easier to
capture. However, we shall show this complements the results thus far. We also note
that the parameter values for the simulation were chosen based on a simulation-
based bifurcation diagram in [24]. This was necessary because the agreement be-
tween bifurcation boundaries in the mean-field and simulation models is qualitative
rather than quantitative.

There is an interesting contrast between the four competing processes: (a) link
creation, (b) link deletion, (c) transmission, and (d) recovery. These processes com-
pete and balance out in order to give rise to oscillatory behaviour both in the preva-
lence and degree. This is illustrated in Fig. 7 where we also show a few explicit
network snapshots during the main phases of a full cycle, including the trough and
peak of the oscillation in prevalence. The main phases of the oscillation cycle are:

1. Phase A: [I] decreasing, (k) decreasing with recovery and link cutting dominat-
ing transmission and link creation, respectively;

2. Phase B: [I] decreasing, (k) increasing with recovery dominating transmission
but link creation dominating link cutting;

3. Phase C: [/] increasing, (k) increasing with transmission and link creation dom-
inating recovery and link cutting, respectively;

4. Phase D: [I] increasing, (k) decreasing with transmission dominating recovery
but link cutting dominating link creation.

Several important observations can be made. The simulation captures different
phases of the cycle. At peak prevalence the cutting of S — I links has the biggest
impact on the remaining few susceptible nodes. These become disconnected from
the cluster of tightly connected infected nodes. Here, the S nodes are poorly con-
nected while the I nodes share many links with other I nodes; see Fig. 7 and the
corresponding degree distributions in Fig. 8. However, when the prevalence is low,
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Fig. 7: A full cycle of oscillation of prevalence (blue, 1), average degree of the whole
network (black, (k)) and of infected nodes (red, (k);) based on a single realisation of
the stochastic simulation (printed in portrait mode for clarity). All data series have
been normalised as ¥’ where v and ¢ are the mean and standard deviation of
the data series taken over the time interval shown in the figure. The dashed lines
denote the time points when the networks have been plotted and, more importantly
correspond to the four Phases A, B, C and D of the oscillation cycle. The peak and
trough of prevalence are highlighted by star symbols and the networks correspond-
ing to these turning points are given at the bottom and top, respectively. Parameter
values are N = 200, y =1, ags = 0.04, T = 6 and ws; = 4.
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the infected nodes become isolated and the network is dominated by the cluster of
susceptible nodes. Table | shows clearly that the average degree of infected nodes
is small when the prevalence is at its trough, while the average degree of susceptible
nodes attains its minimum when prevalence peaks.

Focusing on the case when prevalence is small, it is evident from Fig. 7 that the
creation of S — S links floods the subset of S nodes, making this part of the network
well connected. At this point, the very few infected nodes that may still share links
with the susceptible cluster can trigger a sizeable increase in infection prevalence.
Of course, at this critical point, the epidemic may die out with some non-negligible
probability if enough I nodes are isolated from the susceptible cluster.

To complement the heuristic network plots, the degree distributions of networks
at Phases A, B, C and D are shown in Fig. &. In contrast to the analysis based on
the compact pairwise models, the simulation shows that the role reversal between
the degree of S and I nodes, when going from peak to minimum prevalence, is more
balanced and the number of poorly connected S and I nodes is comparable between
Phases B and D. This of course may be parameter-specific and these regimes may
be present in both models.

Looking at Tables | and 2 we note that the network undergoes significant changes
and these are summarised below. The average degree achieves its highest value when
the prevalence is at its minimum. The networks are sparsest in Phase A, when fol-
lowing a major increase in the prevalence level the network is thinned, and both the
cutting of links and recovery dominate. Overall the observed networks remain fairly
sparse and, as expected, the level of clustering is low. Table 2 shows the unique
counts of a few chosen subgraphs for all six networks. Again, as expected, sub-
graphs are more numerous at the time point when prevalence is at its minimum.
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Fig. 8: Degree distributions of networks in Phase A (o), B (¢), C (0) and D (x). In
the top panel the degree distribution of the entire network is plotted independently
of the status of the nodes. The bottom left and right panels focus on the degree
distributions of susceptible and infected nodes, respectively. Parameter values are:
N=200,7=6, Y= 1, aigs = 0.04 and wg; = 4.
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Entire network Giant component

(] [S] n n ng C|NJ[] [S] n n ng C

132 68 1.74 1.67 1.88 0.02{134 84 50 2.28 2.15 2.50 0.02
B 83 117 3.59 1.12 5.34 0.08(128 18 110 5.11 1.72 5.66 0.08
Min | 77 123 4.22 1.09 6.18 0.07|137 17 120 5.77 1.88 6.32 0.07
C |158 42 3.45 3.81 2.10 0.05{144 117 27 4.60 4.93 3.15 0.05
164 36 3.17 3.55 1.44 0.05({143 125 18 4.24 4.46 2.67 0.05
Max (166 34 3.13 3.51 1.26 0.05|142 127 15 4.20 4.40 2.47 0.05

Table 1: Summary network characteristics for the 6 networks considered in Fig.
Given the large number of components in the network, the table provides infor-
mation both for the entire network and the giant component. The global clustering
coefficient denoted by C in the Table was calculated using the formula proposed
in [10]. The number of components (not shown) is fairly constant across networks
(average of 43, min=37 at min prevalence, max=47 in network A). Network A has
the largest number of nodes with degree 0 (37) and degree 1 (55). The network at
min prevalence has the smallest number of nodes with degree 0 (21) and degree 1
(43).

Km oA o o
A 00 52 6 3
B 337143 9 544 2056
Min | 3 51 289 7 1143 4558
C 0 8117 14 331 1156
D 0 710111 256 803
Max|0 6 9512 230 771

Table 2: Number of uniquely counted subgraphs for each network as calculated
by the subgraph counting algorithm described in [18]. It should be noted that the
number of A corresponds to /A not involved in either X or 2.

4.3 Towards a bifurcation theory of dynamic networks

In formulating this problem, we restrict ourselves to undirected, unweighted net-
works with N nodes, where links are binary (i.e., either present or not). In this case
the state space of all such networks ¢ has cardinality 2"V (N=1)/2 The body of work
concerning the properties and the dynamics of and on such networks indicates that
certain sub-sets of the whole state space are more likely to arise in applications
and in theoretical work. Hence, considering subsets ¥; € ¢, where ¥; correspond to
classes of well-known networks (e.g., Erdés-Rényi random, lattice-type, clustered,
scale-free etc) is a widely used approach.
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This setup is particularly useful when considering dynamical processes evolv-
ing on a fixed network specified on the basis of empirical observations or a network
model. However, when considering adaptive or evolving networks, i.e., when the dy-
namics on the network and that of the network are coupled, this approach needs to
be made more rigorous. Let us first assume that we have a dynamics on the network
where nodes can achieve a discrete number of possible states (i.e., aj,az,...,an)
with transition rules and rates stored in an operator & (dynamic on the network).
This operator is in fact of the form 2 = (D; ;)i j=12,..m, Where D;; = D;;(ri;j,¥)
with 7;; describing the transition rate of a node in state a; to state a;, where this tran-
sition may or may not involve knowledge about the network (i.e., ¢4 - the network’s
adjacency matrix).

Another operator .77 specifies the dynamics of the network which may be vertex
type-dependent (e.g., link activation and cutting, nodes birth and death and instant
partner exchange). For link activation and deletion alone, this operator can be writ-
ten as

H = (Hij)i=12,.M,j=12,

where M = m(m—|— 1)/2, H,‘71 = Hi,l (ase(i)vg) and Hi,2 = Hi72((l)se(l-),g), where se(i)
is the ith element of the set describing all potential edge statuses

SE = {alal,alag,...alam,agaz,azag,...,azam,a3a3,...,amam}.

If, for example, instant partner switching is to be implemented, .7 can be aug-
mented by £ = (L;j); j_y 5. 2, Where L;; is simply the rate at which edges of type
se(j) switch to edges of type se(i). Particular interest is paid to understanding how
the topology of the network changes under the action of different dynamics on and
of the network and how these are coupled. This naturally leads to the question of
how to translate the mathematical concepts and tools from the bifurcation theory of
dynamical systems to a bifurcation theory of dynamical networks.

For example, in the case of a simple epidemic model such as SIS (susceptible-
infected/infectious-susceptible, where 7 is the per-contact infection rate and y is the
recovery rate), coupled with the activation and deletion of links of different statuses
(i.e., SE = {S8,81,11}) and with partner switching or smart rewiring, where the S
node in an S — I rewires to a randomly chosen other susceptible, the entire dynamics
can be captured by the following operators,

SS SI IS 11

e & SS/0 @ 0 0

[ 0 7 [ TS S sl 0o 0 0 0
9‘(7:%0)’%— oo st andZ=5lo 0 0 o
S 7\0 0 0 0

In this relatively well-studied case [7, 12, 24] and given the results in this chapter,
the following observations can be made:
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1. if link activation and deletion are link status-independent (i.e., Scenario A and
® = 0 in .Z), then at equilibrium the resulting network will be an Erd6s-Rényi
random network;

2. if link activation and deletion are link status-independent (i.e., Scenario A and
o = 0in .Z) then at the critical cutting rate o¢*, see equation (7) and Fig. 2, the
network will transition from being connected to disconnected, or vice-versa;

3. in Scenario B (and w = 0 in .Z’) and at the endemic equilibrium, depending on
the precise parameter values, the network at equilibrium may or may not have a
high density of poorly connected nodes, see Fig. 5;

4. in [7], for smart rewiring, it was shown that when .7 = 0 then depending on
the rewiring or partner switching rate @ the network transitions from being
connected to disconnected, or vice-versa.

The interplay between 2, 7 and .Z leads to a bifurcation in the network topol-
0gy, where under the action and interaction of dynamical processes, the network can
evolve towards different topologies/structures. This type of parameter-dependent
change or evolution in network structure is analogous to bifurcations in dynamical
systems, and we can interpret the change in network topology as certain network
steady states losing or gaining stability at the cost of other network steady states
gaining or losing stability.

As seen in the results section above, there is a subtlety as to what can be regarded

as a significant enough difference between two networks in order to be classified as
a different behaviour type. For example using the simple pairwise model we have
seen that the average degree can vary significantly, see Fig. 4, but this may not be
regarded as a sufficiently different outcome. In general, we believe that the parti-
tioning of the graph state space ¢ in terms of known network types may not be the
ideal resolution. Nevertheless, we conjecture that it will be possible to give results
such as the one below.
Conjecture: Given a spreading process defined by 9, and a dynamic network given
by S and £, with the respective set of transition rates, 7% € R (d - total num-
ber of parameters), one can determine a mapping A : RY — ;% which identifies
the bifurcation manifolds, whereby given a fixed set of parameters, the asymptotic
behaviour (e.g., steady-state, quasi steady state and limit cycle) of the network struc-
ture can be specified.

5 Discussion

In this chapter we set out to redress the balance between analysis at system level and
analysis of the emerging network structures by focusing on the latter. Starting from
the simplest pairwise model and guided by its bifurcation analysis we showed that
when the epidemic is at the endemic equilibrium, the average degree of the network
attains a wide range of values and bistable-like behaviour is observed, where the
same average degree is achieved at the same value of the transmission rate, T, but
different cutting rates, .
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Recognising the importance of the degree distribution as defining a network, we
moved to the compact pairwise model which apart from the status of the nodes
also tracks their degree. This model allowed us to show that the emerging networks
can be significantly different at the peak and trough of the oscillations, and that
at equilibrium and depending on the parameter values, networks with significantly
different degree distributions emerge. The analysis of the stochastic model via sim-
ulation revealed a range of networks during the oscillatory cycle and highlighted a
role reversal between susceptible and infected nodes when going from high to low
prevalence. We also speculated mathematically about the shape a bifurcation theory
for networks may take.

Several important questions remain. First of all, the bifurcation analysis of the
compact pairwise model needs to be completed as this may reveal additional fea-
tures or richer model behaviour. This may be challenging as the system is high-
dimensional so the analysis may be restricted to numerical investigations alone. A
big open question remains about the validity of such mean-field models for systems
where dynamic on and of the network are coupled. As explained above, this may
lead to networks becoming disconnected as well as excessive correlations between
nodes of different status, all being factors that may invalidate mean-field models.
Nevertheless, there is some evidence that mean-field models still play an important
role in getting an initial insight into analysing such models.

The numerical investigation of the phases of the oscillatory cycle needs to be
extended to include many different parameter values and assess how the resulting
networks change. In addition, a similar type of numerical investigation or simulation
should be carried out when the epidemic stabilises to the endemic state. Perhaps
more importantly, different dynamics should be considered which may lead to even
richer network-level behaviour. Such dynamics may include voter model, complex
contagion, neuronal dynamics with homeostatic plasticity.

Mathematically, the problem of characterising the emerging network structure
in a bifurcation theory-like fashion may prove to be challenging, partly due to the
mean-field systems being high-dimensional. Overlooking the problem of whether
mean-field models agree well with the average behaviour of the exact stochastic pro-
cess, the analysis of such mean-field models may be best considered like a discreti-
sation of a partial differential equation, thus allowing us to derive a more compact
model which is amenable to analysis. Examples of this type can be found in [21].

Finally, given that it is reasonable to expect that many real-world networks are
in fact time-frozen snapshots of an otherwise evolving system, we argue that such a
network-focused view is not only desirable but could stimulate the development or
design of more natural network-generating algorithms with stronger direct links to
realistic processes.
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