
1 An introduction to probability and distributions

1.1 Probability mass functions, probability density functions, the mean
and the variance

Suppose that a random variable X takes a value from the set of possible values S =
(u1, u2, . . . , uk) and the probability that the value ui is taken is P (X = ui) = f(ui) > 0.
Then the function f is called the probability mass function (p.m.f.) of X. Naturally

∑

x∈S

f(x) = 1

The mean, or expected value, of X is defined as

µ =
∑

x∈S

xf(x) = u1f(u1) + . . . + unf(un)

The variance of X is a measure of how spread out the distribution is about this mean, and
is given by

σ2 =
∑

x∈S

(x− µ)2f(x)

This can be rearranged to the alternative form

σ2 =
∑

(x− µ)2f(x) =
∑

(x2 − 2xµ + µ2)f(x) =
∑

x2f(x)− 2µ
∑

xf(x) + µ2 =
∑

x2f(x)− µ2

If we have a continuous distribution (a distribution on a continuous set S), then the
probability mass function is replaced by the probability density function (p.d.f.). The
probability of any given point is 0, and the probability of a value lying in an interval is
given by

P [a ≤ X ≤ b] =
∫ b

a
f(x)dx

Thus ∫

x∈S
f(x)dx = 1

and the mean and variance are defined in an analogous way to before, namely the mean
of X is defined as

µ =
∫

x∈S
xf(x)dx

and the variance of X is defined as

σ2 =
∫

x∈S
(x− µ)2f(x)dx =

∫

x∈S
x2f(x)dx− µ2
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1.2 Some common distributions

We shall give the p.m.f. or p.d.f., the mean and the variance of some common distributions.
Each distribution is defined in terms of some key parameters; the mean and variance
depend upon the values that these parameters take.

1) The Poisson distribution, parameter λ, has p.m.f.

f(x) =
λxe−λ

x!
x = 0, 1, 2, . . .

The mean and variance of the Poisson distribution both take value λ.

2) The Binomial distribution Bin(n, p) has p.m.f.

f(x) = (n
x)px(1− p)n−x x = 0, 1, 2, . . . , n

The mean of the Binomial distribution is np and its variance is np(1− p).

3) The Negative Binomial distribution NB(m, p) has p.m.f.

f(x) = (x−1
m−1)p

m(1− p)x−m x = m,m + 1,m + 2, . . . ,

The mean of the Negative Binomial distribution is m/p and its variance is m(1− p)/p2.

4) The Exponential distribution, parameter λ, has p.d.f.

f(x) = λe−λx x > 0

The mean of the Exponential distribution is 1/λ and its variance is 1/λ2.

5) The Normal distribution N(µ, σ2) has p.d.f.

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
∀x

The mean of the Normal distribution is µ and its variance is σ2. The standard normal
distribution, written as Z, has µ = 0, σ2 = 1 and is written N(0, 1).

In general if X is N(µ, σ2) then
X − µ

σ

is Normal (0,1).
If X̄ is the mean of a random sample X1, X2, . . . , Xn which is taken from a N(µ, σ2)
distribution, then X̄ is N(µ, σ2/n).
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6) The Gamma distribution, parameters α, ν (written Ga(α, ν)), has p.d.f.

f(x) =
ναxα−1

Γ(α)
e−νx x > 0

where Γ(α) is the appropriate constant term so that the integral of the p.d.f. is 1. The
mean of the Gamma distribution is α/ν and its variance is α/ν2. Note that the Gamma
distribution is sometimes also written as Gamma(α, β) where β = 1/ν.

1.3 Sampling distributions

We often take samples from distributions that we assume are normal, but with unknown
mean and/or variance. We shall consider three key distributions, the χ2(r) distribution,
the T (r), distribution and the F (r1, r2) distribution. All three of these can be expressed
as a function of the standard normal distribution Z. You will see later in the course how
important each of these distributions are, and the circumstances in which they are used.
You should know that the normal distribution is an awkward one, in the sense that there
is no simple closed form for the integral of its p.d.f., and that we make great use of normal
tables. As each of these distributions depends on the normal, each also has its own set of
tables.

If Z1, Z2, . . . , Zr are independent standard normal random variables, then

U =
r∑

i=1

Z2
i

has the χ2(r) distribution.

If Z is a further standard normal random variable, independent of the others, then

T =
Z√
U/r

has the T (r) distribution.

If U is χ2(r1) and V is χ2(r2) then

F =
U/r1

V/r2

has the F (r1, r2) distribution.
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1.4 The Central Limit Theorem

The importance of the normal distribution comes from the following result, which shows
that if we average a number of observations of a particular distribution, even if this
distribution is far from normal, it can be well approximated by the normal distribution.

Central Limit Theorem
If X̄ is the mean of a random sample X1, X2, . . . , Xn, i.e. of size n, from a distribution
with a finite mean µ and a finite positive (i.e. non-zero) variance σ2, then the distribution
of

W =
X̄ − µ

σ/
√

n
=

∑n
i=1 Xi − nµ√

nσ

converges (in distribution) to the standard normal distribution as n →∞.
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2 Point estimates and confidence intervals

2.1 Point estimates

Suppose that we have a random sample X1, . . . , Xn from a normal distribution with mean
µ and variance σ2. Then the natural estimator of the mean of the population is the mean
of the data; so if we have actual observations x1, . . . , xn with mean x̄ =

∑
xi/n then we

estimate µ by x̄.

Now consider data that take values of 1 (probability p) or 0 only, so that each data point
is a Bernoulli (p) random variable so that the sum of a sample of n such data points,
X, is binomial (n, p). The expected value of X is np. Thus if we want to estimate the
proportion p, we can do this with x/n.

We will see more theoretically why the above is the case later in the course.

In the rest of this section we shall consider not just our ”best guess” for the location of
a parameter, but rather find a set of plausible values. Our point estimate will never be
precisely correct, and we would like some information on how wrong it is likely to be. Such
a set of points will generally take the form of an interval, a confidence interval.

2.2 Confidence intervals for a mean

Suppose that we have a random sample X1, . . . , Xn from a normal distribution with mean
µ and known variance σ2. The point estimate of µ is X̄. We know that X̄ itself has a
distribution with mean µ and variance σ2/n.

Thus
X̄ − µ

σ/
√

n

has the standard normal distribution. Writing zα as the value from Normal tables for
which

P [Z > zα] = α

we have

P

(
−zα/2 ≤

X̄ − µ

σ/
√

n
≤ zα/2

)
= 1− α

Rearranging the term within the brackets, we can come up with an equivalent expression,
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which of course has the same probability.

−zα/2 ≤
X̄ − µ

σ/
√

n
≤ zα/2 ⇒

−zα/2
σ√
n
≤ X̄ − µ ≤ zα/2

σ√
n
⇒

−X̄ − zα/2
σ√
n
≤ −µ ≤ −X̄ + zα/2

σ√
n
⇒

X̄ − zα/2
σ√
n
≤ µ ≤ X̄ + zα/2

σ√
n

and so the probability that a random interval
[
X̄ − zα/2

σ√
n

, X̄ + zα/2
σ√
n

]

contains µ is 1− α.

When we obtain a sample the random variable X̄ is replaced by the observed mean x̄ and
we have a 100(1− α)% confidence interval for µ.

[
x̄− zα/2

σ√
n

, x̄ + zα/2
σ√
n

]

The centre of this interval is our sample mean, as we would expect, and the size of the
interval decreases, so the point estimate becomes more precise, as the number of data
points n increases.

Now suppose that we have a random sample X1, . . . , Xn from a normal distribution with
mean µ and unknown variance σ2. The point estimator of µ is again X̄. This time we
shall follow the same procedure, but use the fact that

X̄ − µ

S/
√

n

has a t distribution with n-1 degrees of freedom, where S2 is the common unbiased esti-
mator of σ2 given by

S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2

Using the term tα(m) as the value from t-tables which gives

P [T (m) > tα(m)] = α
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and similarly to before, the probability that a random interval
[
X̄ − tα/2(n− 1)

S√
n

, X̄ + tα/2(n− 1)
S√
n

]

contains µ is 1− α.

When we obtain a sample the random variables X̄ and S2 are replaced by the observed
mean x̄ and variance s2 and we have the following 100(1− α)% confidence interval for µ.

[
x̄− tα/2(n− 1)

s√
n

, x̄ + tα/2(n− 1)
s√
n

]

The centre of this interval is again the sample mean, and the size of the interval decreases,
as the number of data points n increases.

2.3 Confidence intervals for the difference of two means

Suppose that we are interested in making a comparison between the means of two inde-
pendent normal distributions. Let our distributions be N(µX , σ2

X) and N(µY , σ2
Y ) respec-

tively, where the variances are known but the means are not. We take independent samples
X1, X2 . . . , Xn and Y1, Y2 . . . , Ym, with sample means X̄ and Ȳ having distributions

N

(
µX ,

σ2
X

n

)
, N

(
µY ,

σ2
Y

m

)

The distribution of the difference in the means W = X̄ − Ȳ is thus

N

(
µX − µY ,

σ2
X

n
+

σ2
Y

m

)
,

Thus
(X̄ − Ȳ )− (µX − µY )√

σ2
X/n + σ2

Y /m

has the standard normal distribution, and so

P


−zα/2 ≤

(X̄ − Ȳ )− (µX − µY )√
σ2

X/n + σ2
Y /m

≤ zα/2


 = 1− α ⇒

P
(
−zα/2σw ≤ (X̄ − Ȳ )− (µX − µY ) ≤ zα/2σw

)
= 1− α ⇒
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P
(
(X̄ − Ȳ )− zα/2σw ≤ (µX − µY ) ≤ (X̄ − Ȳ ) + zα/2σw

)
= 1− α

where σw =
√

σ2
X/n + σ2

Y /m

After we obtain a sample the random variable X̄ is again replaced by the observed mean x̄
and we have the following 100(1−α)% confidence interval for the difference in the means
µX − µY . [

x̄− ȳ − zα/2σw, x̄− ȳ + zα/2σw

]

If the variances are unknown, but the sample sizes are large, then we can estimate the
variance terms, getting [

x̄− ȳ − zα/2sw, x̄− ȳ + zα/2sw

]

where sw is the observed value of σw given by sw =
√

s2
X/n + s2

Y /m

If the samples are small we have to take a different approach. We shall assume that the
variances are unknown, but equal, so that σ2

X = σ2
Y = σ2. It can be shown that an

appropriate confidence interval is given by
[
x̄− ȳ −

√
1
n

+
1
m

sptα/2(n + m− 2), x̄− ȳ +
√

1
n

+
1
m

sptα/2(n + m− 2)

]

where s2
p is the pooled estimate of the variance, found from

s2
p =

(n− 1)s2
X + (m− 1)s2

Y

n + m− 2

2.4 Confidence intervals for proportions

Let us now again consider data that take values of 1 or 0 only, so that the sum of a sample
of n such data points, X, is binomial (n, p). When finding the confidence interval for such
data we use the normal approximation to the binomial distribution. X is approximately
normal with mean np and variance np(1−p) and X/n is approximately normal with mean
p and variance p(1− p)/n. Thus

X − np√
np(1− p)

=
X/n− p√
p(1− p)/n

has an approximate standard normal distribution, for sufficiently large n. Thus

P

[
−zα/2 ≤

X/n− p√
p(1− p)/n

≤ zα/2

]
≈ 1− α ⇒
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P


X

n
− zα/2

√
p(1− p)

n
≤ p ≤ X

n
+ zα/2

√
p(1− p)

n


 ≈ 1− α

We can find the confidence interval by approximating again, and letting
√

p(1− p) be
approximated by √

X

n

(
1− X

n

)

since this is much less variable than X/n itself. This gives

P


X

n
− zα/2

√
X/n(1−X/n)

n
≤ p ≤ X

n
+ zα/2

√
X/n(1−X/n)

n


 ≈ 1− α

giving the confidence interval

x

n
− zα/2

√
x/n(1− x/n)

n
,
x

n
+ zα/2

√
x/n(1− x/n)

n




2.5 Confidence intervals for paired data

Suppose that we have two normal distributions which can have observations taken in pairs
(e.g. two measurements on the same patient). If these are X and Y , and we are interested
in comparing the means of these distributions, if the values are likely to be dependent, it
can make sense to consider the distribution of X − Y . Suppose that we have n pairs of
dependent measurments (X1, Y1), . . . , (Xn, Yn) We consider the observations only through
Di = Xi − Yi, and the set D1, D2, . . . , Dn which we consider as a random sample from a
normal distribution with mean µD = µX − µY and variance σ2

D. If the data are highly
correlated, then σ2

D can be a lot smaller than σ2
X or σ2

Y . As in the single sample case
(assuming the variance is unknown)

D̄ − µ

SD/
√

n

has a t distribution with n-1 degrees of freedom, where S2
D is the usual unbiased estimator

of σ2
D. This gives the confidence interval for µD = µX − µY in the same way as before

[
d̄− tα/2(n− 1)

sD√
n

, d̄ + tα/2(n− 1)
sD√

n

]

where d̄ and s2
D are the observed mean and variance of the sample.
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3 An introduction to statistical tests

3.1 Introduction

In this section we shall introduce a very important area of statistical inference, the test-
ing of statistical hypotheses. Suppose that there is good reason to think that a set of
observations come from some general class of distributions (e.g. the class of all normal
distributions). We are interested in whether they come from a particular sub-class (for
example the normal distributions with mean 0). We make a hypothesis that the mean of
the underlying distribution of our data is zero, and depending upon information we obtain
from the data we decide whether to accept or reject our hypothesis. For instance a process
may have in the past had mean 0, so it is possible that the current mean is zero also, but
we wish to verify if this is plausible in light of the data.

We state our hypothesis, the null hypothesis, and test it against some alternative set of
possibilities, the alternative hypothesis. Based on the evidence, we either accept or reject
the null hypothesis.

There are two possible mistakes that we can make:
A type I error is when we reject the null hypothesis when it is in fact true.
A type II error is when we accept the null hypothesis when it is in fact false.

We wish to minimise the probability of us making either of these mistakes (though de-
pending on the situation, one mistake may be far more costly than the other).

If the null hypothesis is just represented by a single value, e.g. that the mean is zero, then
it is called a simple hypothesis. For a simple null hypothesis, the probability of making a
type I error is also called the significance level of the test, and is labelled α.

The alternative hypothesis generally consists of a range of possible values; the probability
of a Type II error at any given point is called the power of the test at that point.

3.2 Testing for the mean with known variance

Suppose that we are sampling from a normal distribution with unknown mean µ and
known variance σ2. We are interested in testing whether the mean µ takes a particular
value µ0. The null hypothesis is thus

H0 : µ = µ0

There are three main alternatives for the alternative hypothesis

1)H1 : µ > µ0
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µ has increased
2)H1 : µ < µ0

µ has decreased
3)H1 : µ 6= µ0

µ has changed, but it is not known whether it has increased or decreased.

To test the null hypothesis against one of these three alternative hypotheses, a random
sample of n data points is taken, and the observed sample mean x̄ is found. If x̄ is close
to µ0, this lends support to the null hypothesis. What is meant by ”close” depends upon
the variability of the data, and how much of it we have. The standard error of the mean
is σ/

√
n where σ is the known standard deviation of the distribution. The test statistic Z

is defined by

Z =
X̄ − µ0

σ/
√

n

and will be an observation from a Normal (0,1) distribution if the null hypothesis is true.
If it is false, then Z will tend to be further from 0. The critical region at a significance
level α (the set of values of z where we reject H0) for the three alternative hypotheses are

1)H1 : µ > µ0 z ≥ zα

2)H1 : µ < µ0 z ≤ −zα

3)H1 : µ 6= µ0 |z| ≥ zα/2

For example, if α = 0.05 then from normal tables we obtain z0.05 = 1.645 and z0.05/2 =
z0.025 = 1.960.

3.3 Testing for the mean with unknown variance

Usually the variance σ2 is unknown. How do we test the above null hypothesis in this
case?

For a random sample of n data points from a normal distribution our test statistic becomes

T =
X̄ − µ0

S/
√

n

and will be an observation from a t distribution with n − 1 degrees of freedom, and will
again tend to be further from 0 if the null hypothesis is not true. We have replaced the
true variance of the sample mean σ2/n by its (unbiased) estimate s2/n. This increases the
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variability of our statistic, so that the region where H0 is accepted become slightly larger
than before (the critical region becomes smaller). The critical region at a significance level
α (the set of values of z where we reject H0) for the three alternative hypotheses are

1)H1 : µ > µ0 t ≥ tα(n− 1)

2)H1 : µ < µ0 t ≤ −tα(n− 1)

3)H1 : µ 6= µ0 |t| ≥ tα/2(n− 1)

3.4 the p-value of a test

The p-value is the probability of getting a result at least as extreme as the observed result,
under the assumption that the null hypothesis is true. Thus it is a measure of how unlikely
it would be to obtain the type of result that we did under the null hypothesis.

The smaller the p-value is, the greater the evidence against the null hypothesis. What is
considered as ”more extreme” depends upon which alternative hypothesis is being used.
The concept of the p-value is relevant to any hypothesis testing situation. In the case
of known variance, the p-value for each of the three possible alternative hypotheses is as
follows

1)H1 : µ > µ0 p = P [Z ≥ z]

2)H1 : µ < µ0 p = P [Z ≤ z]

3)H1 : µ 6= µ0 p = P [|Z| ≥ |z|]
where Z is a Normal(0,1) random variable and z is the particular value of our statistic.

Note that in each case if z lies on the boundary of the critical region, the p value is α.
The null hypothesis is rejected if and only if the p-value of the test is less than α

3.5 Testing for proportions

Suppose that we have a situation where each data value is not on some continuous scale, but
rather is represented by either a 1 or a 0 (success or failure of an engineering component,
yes or no in a social survey). On the assumption that each observation is independent
and has probability p of being a 1, the total number of 1s in a sample of size n, and so
the sum of all the data values, can be assumed to come from a binomial distribution with
parameters n and p.
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We are typically interested in the value of p, the proportion of 1s in the population at
large. As before we consider the null hypothesis

H0 : p = p0

There are again three main alternatives for the alternative hypothesis, p has increased, p
has decreased or p has changed, but it is not known whether it has increased or decreased.

In this situation it is generally not possible to find a test with a significance level taking a
given precise value of α, since we are considering a discrete distribution, although we can
do this approximately if n is sufficiently large.

If n (and np) is sufficiently large, then the binomial distribution can be approximated by
a normal dsitribution with the same mean and variance, so that under the null hypothesis
Y is approximately normal with mean np0 and variance np0(1 − p0). Substituting these
for µ and σ2 in our normal tests we obtain the critical region for each of the alternative
hypotheses as

1)H1 : p > p0 z =
y/n− p0√

p0(1− p0)/n
≥ zα

2)H1 : p < p0 z =
y/n− p0√

p0(1− p0)/n
≤ −zα

3)H1 : p 6= p0 |z| = | y/n− p0√
p0(1− p0)/n

| ≥ zα/2

3.6 Testing for the equality of means

Firstly we consider testing for equality of the means. We shall treat this in a similar way
as we did when finding a confidence interval for the difference in the means in an earlier
section; in particular we consider the same t-statistic as before, on the assumption that
the two variances are equal. We test the hyptohesis

H0 : µX = µY

against one of the three obvious alternatives. If the null hypothesis is true then

T =
(X̄ − Ȳ )√(
1
n + 1

m

)
S2

p
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has a t distribution with n + m − 2 degrees of freedom, where S2
p is again the pooled

estimate of the variance

S2
p =

(n− 1)S2
X + (m− 1)S2

Y

n + m− 2
Then we reject the null hypothesis if this observed value is sufficiently far from zero (in the
relevant direction, if appropriate) and this yields the critical regions for the three possible
alternative hypotheses as

1)H1 : µX > µY t ≥ tα(n + m− 2)

2)H1 : µX < µY t ≤ −tα(n + m− 2)

3)H1 : µX 6= µY |t| ≥ tα/2(n + m− 2)

Note that in the two sided test, the complement of the critical region |t| ≥ tα/2(n+m−2)
is equivalent to

−
√

1
n

+
1
m

sptα/2(n + m− 2) ≤ x̄− ȳ ≤
√

1
n

+
1
m

sptα/2(n + m− 2)

so that we accept H0 : µX − µY = 0 if and only if 0 lies in the confidence interval
[
x̄− ȳ −

√
1
n

+
1
m

sptα/2(n + m− 2), x̄− ȳ +
√

1
n

+
1
m

sptα/2(n + m− 2)

]

This relationship between two-sided tests and confidence intervals is in fact quite general.

Note that if we know the variances of our two distributions (whether they are equal or
not) we use the statistic

Z =
(X̄ − Ȳ )√

σ2
X/n + σ2

Y /m

which has the standard normal distribution when the null hypothesis is true. Similarly if
we do not know the variances, but our samples are large we can similarly use

Z =
(X̄ − Ȳ )√

S2
X/n + S2

Y /m

Finally, what if the samples are not large, but we do not believe that the variances are
equal (in particular we think they are far from equal). In such circumstances it is best
not to use the t-statistic as described above. In this case a modified t-statistic is used.
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There is a wide range of different t- distributions (dependening on the degrees of freedom)
so we need to find the degrees of freedom which mostly correspond with the underlying
distribution that we will use. There is more than one way of estimating this. Welch’s
formula gives the estimate of this (expressed as r) as

1
r

=
c2

n− 1
+

(1− c)2

m− 1

where

c =
s2
x

s2
x + s2

y
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4 Descriptive statistics, graphical methods and non-parametric
tests

Before analysing any data, it is always advisable to represent it pictorially in some way.
This is because there are many ways to anaylse data, and the best way depends upon the
type of data involved. You may think you know what type of data you have, in which
case a plot may suggest possible errors or omissions in the data. We will describe several
simple ways of plotting data which do not involve a lot of work, but may save you a lot!
We follow this by considering two examples of statistical tests which do not assume the
data follow some particular type of distribution (although this does not mean that we
make no assumptions) which can be applied in a wide range of circumstances.

4.1 Bar charts, stem and leaf plots and histograms

Quantitative data can be represented in many ways. Three related pictorial representa-
tions are bar charts, stem and leaf plots and histograms. Consider the following example,
which describes the amount of money spent in the fiscal year 2000 by the US Department
of Defence in various categories

Category Amount (billions of dollars)
Military personnel 76.0
Operation and maintenance 105.9
Procurement 51.6
Research and development 37.6
Military construction 5.1
Total 276.2

This data can be represented both as a bar chart. In the bar chart, each category simply
gets a bar whose height corresponds to size of its numerical entry.

If we have a set of numerical data, expressed in decimal form, x1, . . . , xn we can categorise
this data by allocating the data in a particular interval to a certain category. The simplest
way to do this is to divide each entry into two parts the stem and the leaf. The stem is
the more significant part, and each type of stem will represent a category. For example,
our stem could be the data cut off at the first decimal place, and the leaf is the remainder.
Thus 2.59 would have stem 2.5 and leaf (9). Every data point with stem 2.5 will be
grouped together as a single category.

Suppose we have the following set of data
2.41,2.57,2.35,2.54,2.49,2.37,2.50,2.51,2.32,2.46,2.48,2.44,2.52,2.38,2.47
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Choosing the value of the data cut off at the first decimal place, we obtain the following
stem and leaf plot

2.3 5728
2.4 196847
2.5 74012

which we rearrange in numerical order as

2.3 2578
2.4 146789
2.5 01247

The aim of this idea is to get an impression of the shape of the distribution. Sometimes
the numbers are such that dividing the stems just by the ”cutting off” method above is
not very informative, and we have to divide the stems differently. For instance it might be
convenient to have two categories for 2.5?, with 2.50-2.54 in category 2.5a, and 2.55-2.59
in category 2.5b. The above stem and leaf plot now becomes

2.3 2
2.3 578
2.4 14
2.4 6789
2.5 0124
2.5 7

Thus the stem and leaf plot is a version of a bar chart. Note that, unlike the earlier version
with the military data, there is a natural order of the categories, which it would not make
sense to rearrange.

A histogram is a pictoral representation of the data, similar in form to a bar chart but
with important differences. Suppose again that we have a set of numerical data x1, . . . , xn

that we can divide into categories. In a histogram these categories do not have to be
equal width. For each interval the area of the block representing it is the same as the
proportion of data points within that category. Thus if 6 out of 15 data points lie in a
category covered by an interval of width 0.5, the proportion of data points is 6/16=0.4,
and the height of the block is therefore 0.4/0.5=0.8. The sum of the areas of all the blocks
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is equal to 1, and the histogram gives an approximation to the shape of the p.d.f. (or
p.m.f) of the underlying distribution.

4.2 Five number summary and boxplot

We introduce a way to represent a set of data by five numbers only, whilst retaining most
of the important information. Suppose that we have a set of data points x1, . . . , xn. We
shall now reorder the data points in order of size y1, . . . , yn so that y1 is the smallest of
the xs, y2 the next smallest up to yn the largest. The median, m of the data is given by
the data value in position (n + 1)/2. Thus it is

m = y(n+1)/2(oddn),m =
yn/2 + yn/2+1

2
(evenn)

The lower quartile, Q1 is the data value in position (n + 1)/4 and similarly the upper
quartile, Q3 is the data value in position 3(n + 1)/4. As in the case of the median, this
may not be an integer value, in which case interpolation is used between the two adjacent
values. Finally the minimum of the data is just y1 and the maximum is yn. A useful
measure of the spread of the data is the interquartile range, given by Q3-Q1.

These five numbers (minimum, lower quartile, median, upper quartile and maximum)
together make up the five number summary. They provide all of the information required
to produce a boxlot of the data.

A good way to make a preliminary comparison between two data sets and their important
features such as location, spread and skewness is to produce back to back boxplots.

4.3 Cumulative distribution plots and Normal Q-Q plots

The empirical cumulative distribution function is defined as the fraction of the data smaller
than the value y, over all values of y. Thus if x is the kth smallest of our n data values,
the value of the function will be k − 1/n for y just below x, and jump to k/n at y = x.
The idea of this plot, is that the empirical function will look like the distribution function
of the underlying distribution, and by looking at it you can get some idea of what that
function might be.

Often we are interested in whether the data are normally distributed. For a better method,
we can plot the kth smallest observation against the expected value of this out of n
observations for a standard normal distribution. if the data come from some normal
distribution, this plot should look like a straight line. This is not especially easy to do ‘by
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hand’ but most statistical software packages can do it. It is done in R using
qqnorm(x)

4.4 The sign test

Suppose that we have a random sample X1, . . . , Xm from some unknown distribution with
median m, which we cannot assume to be normal. We wish to test the hypothesis that
the median takes some value m0, against the alternative that it does not i.e.

H0 : m = m0

H1 : m 6= m0

Under the null hypothesis each data point is equally likely to be above or below m0. If we
let Y be the number of observations of Xi which are less than m0 then under H0 Y has a
Binomial (n, 0.5) distribution (which is symmetric about its mean/median n/2). If H0 is
true then values of Y near n/2 are more likely than if it is false. Therefore we reject H0

if our observed value of Y is too far from n/2 in either direction. It is again possible to
consider either of the one-sided test, so we will have critical regions

1)H1 : m > m0 Y ≤ k1

2)H1 : m < m0 Y ≥ k2 = n− k1

3)H1 : m 6= m0 Y ≤ n

2
− k3orY ≥ n

2
+ k3

A common use of this test is when comparing paired data Yi and Zi, and wanting to test
whether the two distributions are the same. In this case the mean and the median of
X = Y − Z would be zero.

4.5 The Wilcoxon Test

Suppose that we now have two random samples X1, . . . , Xm and Y1, . . . , Yn from some
unknown distributions with means µX and µY respectively, which we cannot assume to
be normal. We wish to test the hypothesis that the distributions are the same, against
the alternative that they are not. There are m + n values; suppose that we order them
(irrespective of which sample they come from) from smallest to largest.
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If the two distributions were identical, then every possible ordering would be equally likely.
There are (m + n)! of them, so each has probability 1/(m + n)!. Let rj be the ordering,
or rank, of Yj in the pooled group. We shall consider the statistic

R =
n∑

j=1

rj

If the mean µY of the underlying distribution of the Yjs is larger than that of the Xis (µX)
then R will tend to be large, if it is smaller it will be small, and if they are the same it will
be intermediate. There are the three usual alternative hypotheses, with critical regions

1)H1 : µX > µY R ≤ k1

2)H1 : µX < µY R ≥ k2

3)H1 : µX 6= µY R ≤ k31orR ≥ k32

The values of the ks can be found from tables.

It is also possible to use a version of the Wilcoxon test to consider the median of a
distribution as in the sign test above. We are able to utilise more information than in the
sign test, and hence the test will be more powerful. We have a random sample X1, . . . , Xm

from some unknown distribution with median m, and we wish to test the null hypothesis
that the median takes some value m0. We transform our data by allocating Xi −m0 to
the series Y if Xi −m0 > 0 and −(Xi −m0) to the series Z if Xi −m0 < 0.

Thus we have two series Y which are the sizes of the positive differences (above the
supposed median m0), and Z are the sizes of the negative differences. We rank the Y and
Zs together as above, and then consider the statistic W which is the sum of the ranks
of the Y s minus the sum of the ranks of the Zs. If H0 is true then about half of the
differences will be positive and of about the same size as the negative differences, so W
will be near 0. If H0 is not true then W will be tend to be positive if the median is larger
than m0 and negative if it is less. Thus we will have

1)H1 : m > m0 W ≥ k1

2)H1 : m < m0 W ≤ k2

3)H1 : m 6= m0 W ≤ k31orW ≥ k32

In particular when n is sufficiently large, under H0, W is approximately Normal with
mean 0 and variance

n(n + 1)(2n + 1)
6
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so that
W

n(n + 1)(2n + 1)/6

is approximately N(0,1).
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5 Regression and correlation

5.1 Simple linear regression

Let us consider a situation where we have a set of paired data (X1, Y1), . . . , (Xn, Yn) and
we are interested in finding the relationship between the two values; in particular we are
interested in predicting what the value of Y may be if we know the value of X. The series
X may be something that is in our control to vary, or simply something we can measure
accurately.

We shall assume a straightforward relationship between Y and X, namely that

E[Y ] = α + βX

so that on average the relationship between the two is linear. In addition there is a random
component, so that we have a probabilistic model

Y = α + βX + ε

where ε is an error term, assumed to come from a normal distribution with mean 0 and
variance σ2 for some unknown σ2. In addition it is assumed that every value of ε is
independent of every other.

5.2 The method of least squares

Our aim is to find the line which fits the data best. We want to minimise the distance
of the data points from the line in some sensible way. Given that it is assumed that we
control the xis but not the yis, the logical method is to consider the vertical distances
from the data points to the fitted line. The method of least squares seeks to minimise the
sum of the squares of this distance over all of the data points. There are other possible
ways to fit the line, but this is the most common (by far).

We thus wish to minimise the sum

S(α, β) =
n∑

i=1

(yi − α− βxi)2

by choosing the values of α and β appropriately. We differentiate with respect to α and
β in turn and set equal to zero.

∂

∂α
S(α, β) = −2

n∑

i=1

(yi − α− βxi) = 0 ⇒
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1
n

(∑
yi − nα− β

∑
xi

)
= ȳ − α− βx̄ = 0

∂

∂β
S(α, β) =

n∑

i=1

−xi(yi − α− βxi) ⇒

1
n

(∑
xiyi − α

∑
xi − β

∑
x2

i

)
=

1
n

∑
xiyi − αx̄− β

1
n

∑
x2

i = 0

Setting a as the value of α and b as the value of β which solve these equations simultane-
ously, and so become our estimates of α and β, we obtain

a = ȳ − bx̄

and
1
n

∑
xiyi − (ȳ − bx̄)x̄− b

1
n

∑
x2

i = 0 ⇒
1
n

∑
xiyi − ȳx̄ = b

(
1
n

∑
x2

i − (x̄)2
)
⇒

b =
Sxy

Sxx

Sxx =
∑

x2
i − n(x̄)2, Sxy =

∑
xiyi − nȳx̄

We can estimate the variance of the error term, σ2, by substituting the estimates of α and
β into the sum of squares, and weighting by the number of observations, i.e.

σ̂2 =
1
n

n∑

i=1

(yi − α̂− β̂xi)2 =
1
n

n∑

i=1

(yi − a− bxi)2 =

1
n

n∑

i=1

(yi − ȳ + bx̄− bxi)2 =
1
n

n∑

i=1

(yi − ȳ)2 +
1
n

2b
n∑

i=1

(yi − ȳ)(x̄− xi) +
1
n

b2
n∑

i=1

(x̄− xi)2

=
1
n

(
Syy − 2bSxy + b2Sxx

)
=

1
n

(
Syy −

S2
xy

Sxx

)

where
Syy =

∑
y2

i − n(ȳ)2
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5.3 Assessing the fit of a regression model

A common measure of the strength of the linear relationship between X and Y is related
to the correlation coefficient, r, which we shall meet later.

r2 =
(SXY )2

SXXSY Y

is called the coefficient of determination and can be thought of as the proportion of the
variation within the data explained by the linear regression of Y on X. Thus if r2 is large
(close to 1), then knowledge of X gives a great deal of information about what Y will be,
whereas if it is small (near 0) then very little information is provided.

It is possible that there is no relationship between X and Y , of course, but it is also
possible that there is a relationship which is not linear. How can we tell if this is the case?

The most obvious thing to do is plot the data and see if there appears to be a linear
relationship between X and Y . Amore detailed investigation would involve fitting the
regression line and plotting the residuals

yi − a− bxi

against xi. If the regression model is a good one, then there should be no pattern to this
data, since

Yi − α− βXi

is a normal random variable with mean 0 and variance σ2, independent of all others. If
there is a clear pattern, then the linear model is unlikely to be true. Particular things to
look out for include bunches of positive values, then negative values, then positive again
(suggesting a curved relationship) or increasing variance with the size of X (possibly a
logarithmic relationship). There are other things to look for, for instance a normal prob-
ability plot could show whether the residuals were likely to be from a normal distribution
(as we have assumed).

Note that a more formal way to test the validity of the model is to use Analysis of Variance
which we shall meet later in the course.

5.4 Transforming the data

If it appears that there is not a linear relationship between X and Y it may be possible
to transform the data to new values where there is a linear relationship. It may be that
the relationship relating Y and X (neglecting the error terms) is

Y = αexp(βX)
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in which case, taking logarithms gives

log(Y ) = log(α) + βX

so we can regress log(Y ) against X. Similarly

Y = αXβ ⇒ log(Y ) = log(α) + βlog(X)

so we regress log(Y ) on log(X). If

Y = α +
β

X

we can regress Y on 1/X etc.

It should be noted that the underlying error structure of the data is important, and should
be regarded as an integral part of the model. For instance

Yi = εiαexp(βXi) ⇒ log(Yi) = log(α) + βXi + log(εi)

so that log(ε) should be N(0, σ2), not ε itself.

5.5 Correlation

The related topic of correlation deals with the strength of linear relatedness between two
random variables, X and Y . If X is large, does this mean that Y is more likely to be
large, to be small or does this tell us little about Y ?

Suppose that X has mean µX and variance σ2
X , and Y has mean µY and variance σ2

Y . We
further define the covariance of X and Y , Cov(X, Y )(= σXY ), as

σXY = E[(X − µX)(Y − µY )] = E[XY ]− µXµY

The correlation coefficient of X and Y is defined as

ρ =
Cov(X, Y )√

V ar(X)V ar(Y )
=

σXY

σXσY

Thus we have;
1) if Y = X, then σXY = σ2

X = σ2
Y and ρ = 1, perfect positive correlation.

2) if Y = −X, then σXY = −σ2
X = −σ2

Y and ρ = −1, perfect negative correlation.
3) if Y and X are independent, then

σXY = E[(X − µX)(Y − µY )] = E[XY ]− µXµY = E[X]E[Y ]− µXµY = 0
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and so ρ = 0, zero correlation. Note that independence implies zero correlation, but zero
correlation does not necessarily mean independence.

We have considered the true, theoretical, correlation of the distributions. As in the case of
linear regression, if we are presented with a set of paired data (X1, Y1), . . . , (Xn, Yn), and
we are interested in the correlation of X and Y , we will have to estimate it. The sample
correlation coefficient is found using the estimates

σ̂2
X =

1
n

n∑

i=1

(xi − x̄)2, σ̂2
Y =

1
n

n∑

i=1

(yi − ȳ)2

ˆσXY =
1
n

n∑

i=1

(xi − x̄)(yi − ȳ)

to give

r =
1
n

∑n
i=1(xi − x̄)(yi − ȳ)√

1
n

∑n
i=1(xi − x̄)2

√
1
n

∑n
i=1(yi − ȳ)2

=

SXY√
SXXSY Y
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6 The analysis of variance

Previously we have looked at how to compare the means of two normal distributions. Now
we consider how to consider a large number of distributions.

6.1 Testing the equality of several means

Suppose that we have m normal distributions, with unknown means µ1, µ2, . . . , µm respec-
tively, and an unknown but common variance σ2. We consider the null hypothesis

H0 : µi = µ i = 1, . . . , m

for some unspecified µ, against the alternative hypothesis that this is not true, so that
there is at least some pair of means which are different.

Let Xi1, Xi2, . . . , Xini represent a random sample of size ni from the distribution N(µi, σ
2),

for each i.

Further denote the mean of sample i as

X̄i. =
1
ni

ni∑

j=1

Xij

and the overall mean of all the samples as

X̄.. =
1
n

m∑

i=1

ni∑

j=1

Xij

where n = n1 + . . . + nm.

We wish to form a test of our null hypothesis. We shall initially consider the sum of squares
associated with the overall variance of the data, and partition this into two components.
We label this the total sum of squares, SS(T).

SS(T ) =
m∑

i=1

ni∑

j=1

(Xij − X̄..)2 =

m∑

i=1

ni∑

j=1

(Xij − X̄i. + X̄i. − X̄..)2 =

m∑

i=1

ni∑

j=1

(Xij − X̄i.)2 +
m∑

i=1

ni∑

j=1

(X̄i. − X̄..)2+
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2
m∑

i=1

ni∑

j=1

(Xij − X̄i.)(X̄i. − X̄..)

This third term is just zero, since we can rearrange it as

2
m∑

i=1

(X̄i. − X̄..)
ni∑

j=1

(Xij − X̄i.) = 2
m∑

i=1

(X̄i. − X̄..)(niX̄i. − niX̄i.) = 0

In a similar way we can rewrite the second term
m∑

i=1

ni∑

j=1

(X̄i. − X̄..)2 =
m∑

i=1

ni(X̄i. − X̄..)2

Thus we have
SS(T ) = SS(B) + SS(W )

where the sum of squares within groups, SS(W) is given by

SS(W ) =
m∑

i=1

ni∑

j=1

(Xij − X̄i.)2

and the sum of squares between groups, SS(B), is given by

SS(B) =
m∑

i=1

ni(X̄i. − X̄..)2

If the null hypothesis is true, then every observation just comes from a single normal dis-
tribution with mean µ and variance σ2. In this case SS(T )/σ2 has a χ2(n−1) distribution,
and SS(T )/(n− 1) is unbiased for σ2.

Considering a single sample i, an unbiased estimator for σ2 is given by

Wi =
1

ni − 1

ni∑

j=1

(Xij − X̄i.)2

as (ni − 1)Wi/σ2 is χ2(ni − 1). We can add these terms for all m samples to give
m∑

i=1

(ni − 1)Wi

σ2
=

m∑

i=1

ni∑

j=1

1
σ2

(Xij − X̄i.)2 =
SS(W )

σ2

which thus has a χ2 distribution with
∑m

i=1(ni − 1) = n − m degrees of freedom. Thus
SS(W )/(n−m) is an unbiased estimator of σ2.

It can be shown that SS(W ) and SS(B) are independent, and that since SS(W )/σ2 is
χ2(n−m) and SS(T )/σ2 is χ2(n− 1) then SS(B)sigma2 is χ2(m− 1).
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6.2 Analysis of variance

Some of the above is based upon the assumption that H0 is true, and some is not. In
particular SS(W ) is χ2(n−m) whether or not H0 is true, but the same is not true for the
χ2 distribution of SS(T). An important piece of information that we can use, is that if all
the means are not equal SS(T ), and hence SS(B), will tend to be larger than if they are.
We show this below by considering the expectation of SS(B).

E[SS(B)] = E

[
m∑

i=1

ni(X̄i. − X̄..)2
]

= E

[
m∑

i=1

niX̄i.
2 − nX̄..

2

]
=

m∑

i=1

ni(V ar(X̄i.) + E(X̄i.)2)− n(V ar(X̄..) + E(X̄..)2) =

m∑

i=1

ni

(
σ2

ni
+ µ2

i

)
− n

(
σ2

n
+ µ2

)
=

(m− 1)σ2 +
m∑

i=1

ni(µ2
i − µ2) = (m− 1)σ2 +

m∑

i=1

ni(µ2
i − 2µiµ + µ2) =

(m− 1)σ2 +
m∑

i=1

ni(µi − µ)2

where

µ =
1
n

m∑

i=1

niµi

Thus if the null hypothesis is true, the expectation of SS(B)/(m-1) is σ2, and if it is false
it is some larger value. Moreover, in some sense, the larger the departure from the null
hypothesis that the truth is, the larger this expectation is.

Both of the terms SS(B) and SS(W) contain the unknown variance term σ2. We can
remove this from our calculations by considering the ratio of these two terms.

SS(B)/(m− 1)
SS(W )/(n−m)

=
SS(B)/σ2(m− 1)
SS(W )/σ2(n−m)

= F

where F is our test statistic. Under H0 F has an F distribution with m − 1 and n −m
degrees of freedom, as SS(B)/σ2 and SS(W )/σ2 are χ2 and independent. If H0 is false,
the observed F will tend to be too large. Thus the critical region is

F ≥ Fα(m− 1, n−m)
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The relevant information is usually summarised in an analysis of variance table, see below.
The mean square term is just the sum of squares divided by the degrees of freedom, so that
under H0 mean squares should be of comparable size. Note that ”analysis of variance” is
concerned with comparing the means, and not the variances.

Source Sum of squares df Mean square F -ratio
Between groups SS(B) m− 1 MS(B)=SS(B)/(m-1) MS(B)/MS(W)
Within groups SS(W) n−m MS(W)=SS(W)/(n-m)

Total SS(T)

Suppose that we reject H0, and so decide that there is some difference between the groups.
We may well be interested in which groups differ from which others. We can perform a
pairwise test on each pair of groups in term, following a procedure similar to that from
Section 3.

Whether H0 is true for false, we can estimate σ2 by SS(W )/(n −m), so that the means
of groups i and j can be judged as different if

|X̄i. − X̄j.|√
(1/ni + 1/nj)SS(W )/(n−m)

> tα/2(n−m)

However, as there are m such groups, there are m(m− 1)/2 tests being carried out if we
wish to compare every pair of means. Given that for each test we ‘find’ a difference even
when there is not one 100α% of the time (typically 5%), if we carry out enough tests it
is almost certain that we will find numerous false positives. Thus, following the method
of Bonferroni (there are other more complex methods which can be better) we correct for
this by ‘raising the bar’ and making it more difficult to reject the null hypothesis in each
case, by dividing our significance level α by the number of tests m(m− 1)/2.

|X̄i. − X̄j.|√
(1/ni + 1/nj)SS(W )/(n−m)

> tα/(m(m−1))(n−m)

This multiple testing problem is particularly common in genetic analysis, where there can
be thousands of such comparisons taking place.
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7 Analysing tabular data

7.1 Goodness of fit tests

Consider an experiment where there are k possible outcomes A1, A2, . . . , Ak and set pj to
be the probability that the outcome of a particular trial is Aj , so that

∑
pj = 1.

The experiment is repeated n times ,and we let Yj be the number of times that the outcome
Ai occurs. The distribution of Y1, . . . , Yk follows a multinomial distribution, namely the
probability mass function is given by the formula

P (Y1 = y1, Y2 = y2, . . . , Yk = yk) = f(y1, y2, . . . , yk−1, yk) =
n!

y1!y2! . . . yk!
py1
1 . . . pyk

k

Note that there are are only k − 1 ”free” terms in this expression, as
∑

Yj = n, so that
once the first k − 1 Yjs are known, Yk is determined.

We claim that

Q =
k∑

j=1

(Yj − npj)2

npj

has, approximately, a χ2(k − 1) distribution.

This approximation works well provided that all of the npj ≥ 5 (and sometimes for smaller
values).

We shall see why this works in the case when k = 2. In this case Y1 is binomial (n, p1)
and so the central limit theorem tells us that

Z =
Y1 − np1√
np1(1− p1)

has an approximate Normal (0,1) distribution for large n (in particular when np1 and
n(1− p1) are at least 5). Thus the square of Z

Z2 =
(Y1 − np1)2

np1(1− p1)

has a χ2(1) distribution.

Z2 =
(Y1 − np1)2

np1(1− p1)
=

(Y1 − np1)2

np1
+

(Y1 − np1)2

n(1− p1)
=

(Y1 − np1)2

np1
+

(Y2 − np2)2

np2
= Q
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since p2 = 1− p1 and (Y1 − np1) = −(Y2 − np2). Thus Q is χ2(1).

The fact that in general Q is χ2(k−1) can be used to test hypotheses about the parameters
pj in a similar way to before.

The standard null hypothesis is of the form

H0 : pj = pj0 j = 1, . . . , k

i.e. that the pjs take some particular set of known values pj0. The alternative hypothesis
will usually simply be that this is not true, and that the pjs take some other unspecified
set of values, i.e.

H1 : pj 6= pj0

for at least one (in practice this means at least 2) values of j.

In its simplest case this could reduce to

H0 : pj = 1/k j = 1, . . . , k

so that all probabilities are equal.

7.2 Contingency Tables

One use of the test discribed above is that concerning contingency tables. Consider several
multinomial distributions simultaneously. We thus have a number of categories (h) each
of which are split into a number of classes (k). Assume that data from category i have
probability pij of being in class j, j = 1, . . . , k and i = 1, . . . , h. Thus

k∑

j=1

pij = 1 i = 1, . . . , h

We test the null hypothesis that all of these distributions are the same

H0 : p1j = p2j = . . . = phj = pj j = 1, . . . , k

against the alternative hypothesis that this is not true.

Supposing that we take a sample of size ni from the ith distribution, the number Yij from
sample i being of type j, we can obtain the following table
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Y11 Y12 . . . Y1k n1

Y21 Y22 . . . Y2k n2

. . . . . . . . . . . . . . .
Yh1 Yh2 . . . Yhk nh

We can adapt the result from before that

Q =
h∑

i=1

k∑

j=1

(Yij − nipj)2

nipj

has, approximately, a χ2(h(k − 1)) distribution. We do not know the value of pj , and so
estimate them by pooling the data to give

p̂j =
∑h

i=1 Yij∑h
i=1 ni

=
mj

n
j = 1, . . . , k − 1

where mj is the total number of occurrences occurrences of event j over all distributions,
and n is the total number of all occurrences. Note that the estimate of pk, p̂k is just
1− p̂1 − . . .− ˆpk−1. Our complete table is now

Y11 Y12 . . . Y1k n1

Y21 Y22 . . . Y2k n2

. . . . . . . . . . . . . . .
Yh1 Yh2 . . . Yhk nh

m1 m2 . . . mk n

Under H0 the revised statistic is

Q =
h∑

i=1

k∑

j=1

(Yij − nip̂j)2

nip̂j
=

h∑

i=1

k∑

j=1

(Yij − nimj/n)2

nimj/n

which may be more familiar in the form

Q =
h∑

i=1

k∑

j=1

=
h∑

i=1

k∑

j=1

(Oij −Eij)2

Eij

where Oij is the observed number of elements in row i and column j of the table and Eij

is the expected number of observations in this cell, based upon knowledge of the row sums
and column sums alone, and this expected value is just the product of the row sum and
the column sum divided by n.
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Q has approximate distribution χ2 with h(k − 1) − (k − 1) = (h − 1)(k − 1) degrees of
freedom. The number of degrees of freedom are reduced by k − 1 as we have had to
estimate k − 1 p̂js (or the number of ”free” entries in the contingency tables is (h-1)(k-1)
as, if we know the row and column sums, the last row and the last column are determined
by the first h− 1 rows and k − 1 columns).

We can thus carry out a test of H0 in the same way as before.

in this we we can find if there is any relationship between the rows and the columns of
our tables. Supposing that there is a relationship, how do we determine the nature of the
relationship? One obvious way is to look at the contribution of each cell to the overall
value of Q; where this number is large, the divergence of observation from expectation
can be considered large. it may be that just a single cell stands out, indicating that the
probability of occurence of class j from category i is out of line with the other classes.
More informative would be if a single row had a number of larger entries, indicating that
the probabilities for this category were generally different from the others, so perhaps all
other categories are similar with the exception of this one.
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8 Multiple and polynomial regression

8.1 Confidence intervals and tests for simple linear regression

We shall first return to linear regression and consider the varaince of our two parameter
estimates a and b in order to use them to find confidence intervals. Since b is a linear
function of independent normal random variables where

b =
∑n

i=1(xi − x̄)(Yi − Ȳ )∑n
i=1(xi − x̄)2

=
∑n

i=1(xi − x̄)Yi∑n
i=1(xi − x̄)2

we have
E[b] =

∑n
i=1(xi − x̄)E[Yi]∑n

i=1(xi − x̄)2
=

∑n
i=1(xi − x̄)(α + β(xi − x̄)∑n

i=1(xi − x̄)2
= β

and

V ar[b] =
n∑

i=1

(
xi − x̄∑n

i=1(xi − x̄)2

)2

V ar[Yi] =

∑n
i=1(xi − x̄)2

(
∑n

i=1(xi − x̄)2)2
σ2 =

σ2

∑n
i=1(xi − x̄)2

=
σ2

∑n
i=1(xi − x̄)2

Similarly a is also a linear function of the Yis and we have

E[a] = E

[
1
n

n∑

i=1

Yi − bx̄

]
=

1
n

n∑

i=1

E[Yi]− bx̄ =
1
n

n∑

i=1

(α + βxi)− bx̄ = α

and it can be shown that

V ar[a] =
∑n

i=1 x2
i∑n

i=1(xi − x̄)2
σ2

We can thus use the standard type of statistical methods that we have seen earlier in the
course to obtain confidence intervals for the parameters and test the hypothesis that there
is really no relationship between X and Y .
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A confidence interval forβ, the true slope of the regression line, is given by its point
estimate b plus or minus the standard error of b multiplied by the appropriate value from
t-tables.

b− tα/2(n− 2)
s√
Sxx

, b + tα/2(n− 2)
s√
Sxx

A test of whether the slope is zero (so X and Y would be independent) is directly related
to this confidence interval; we reject the null hypothesis of zero slope if and only if 0 does
not lie in the confidence interval for β.

We can a similar confidence interval for the mean of Y at a given value of x, using the
fact that

V ar(a + bx) = σ2

(
1
n

+
(x− x̄)2

Sxx

)

which gives the confidence interval

a + bx− tα/2(n− 2)

√(
1
n

+
(x− x̄)2

Sxx

)
s, a + bx + tα/2(n− 2)

√(
1
n

+
(x− x̄)2

Sxx

)
s

Other confidence intervals and tests of appropriate measures can also be made in a similar
manner.

8.2 Multiple regression

Suppose that we have a random variable Y which depends on several factors X1, X2, . . . , Xk.
We shall assume that there is a linear relationship, so that

Y = β1X1 + β2X2 + . . . + βkXk + ε

where ε is N(0, σ2). If we have n data values of Y , together with the corresponding values
of the Xs,
yj , x1j , x2j , . . . , xkj j = 1, . . . , n
then we can use the method of least squares to minimise

S(β1, . . . , βk) =
n∑

j=1

(yj − β1x1j − . . .− βkxkj)2
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We again differentiate with respect to each βi in turn and set to zero, to give a set of k
simultaneous equations.

∂

∂βi
S(β1, . . . , βk) =

n∑

j=1

−2xij(yj − β1x1j − . . .− βkxkj) ⇒

∑
xijyj − β1

∑
x1jxij − . . .− βk

∑
xkjxij = 0 i = 1, 2, . . . , k

These can be solved easily by computer for a large number of factors. Just as for grouped
data we can assess the significance of the grouping using an analysis of variance table. We
obtain the same kind of F statistic, for each variable in turn, based on a specific ordering
which tells us whether the variable should be included given the inclusion of all variables
higher up the chain. Thus changing the ordering and comparing results is sensible. The
aim will be to find the variables that are important in predicting the value of Y , and those
that make no difference once the others are included. This can be problematic if there is
a strong linear relationship between some of the variables.

8.3 Polynomial regression

Suppose now that we have a relationship between Y and a single variable X.

Y = β1X + β2X
2 + . . . + βkX

k + ε

At first sight the use of linear regression seems inappropriate, as the relationship between
Y and X is clearly non-linear. However the parameters βi appear in the same linear
form as is the case with multiple regression. in fact it is just a simple extension from the
methods of multiple regression to obtain estimates of the parameters in the above model.
We treat the different powers of X as if they were different variables Xi and perform a
multiple regression, which is fine since these powers are not linearly related to each others
(although there can be some stability problems because of the obvious high degree of
dependence between the different powers of X).

Following the method of the previous section exactly for a series of data pairs xi, yi i =
1, . . . , n, we obtain

S(β1, . . . , βk) =
n∑

j=1

(yj − β1xj − . . .− βkx
k
j )

2
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We differentiate with respect to each βi in turn and set to zero yet again, to give a set of
k simultaneous equations.

∂

∂βi
S(β1, . . . , βk) =

n∑

j=1

−2xi
j(yj − β1xj − . . .− βkx

k
j ) ⇒

∑
xi

jyj − β1

∑
xi+1

j − . . .− βk

∑
xi+k

j = 0 i = 1, 2, . . . , k

We can again think about whether we include all the terms, although it is generally
assumed that all terms up to a maximum power are included, so the ordering problem of
multiple regression does not apply.
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9 Principal component analysis

9.1 Introduction

Suppose that we have a large number of measurements
xij ; j = 1, . . . , n
taken on a range of subjects i = 1, . . . , m. It may be very complicated to try to estimate
how each of these affect certain other variables, and it may be unnecessary to consider them
all because some are closely correlated with others. So if we had measured individuals
height in centimetres and also in inches we could throw either of these away, as one is
simply a constant multiplied by the other. We may thus be interested in reducing the
data that we have to a number of important factors. We can do this in particular cases by
removing those which do not have a significant effect, as in the case of multiple regression.

What if we want to summarise these data into as small a number of factors as possible for
ease of use and interpretation? For example, how do we best combine two factors into a
single one? Suppose that we have data values

x11, x12, . . . , x1n

x21, x22, . . . , x2n

It will not generally be best to just throw one of them away; rather we will choose

C = α1X1 + α2X2

for some α1 and α2 which captures as much of the information as possible. In fact it is only
the ratio α1/α2 that determines where the line lies, so there is only one ‘free’ parameter.
There are two parameters because we have not yet specified the scaling of our components,
which will be made to satisify particular restrictions.

We find the correct ratio by fitting a line to the data in a similar (but not exactly the
same) way as fitting a regression line of X2 on X1.

9.2 Correlation Matrices

To find our principal components we do not need to consider plots of the data (and these
would be multi-dimensional for the cases we would really be interested in doing this for)
but we can summarise our data into a single matrix of crucial information, which is the
correlation matrix. Simply, we find the correlation of every pair of variables in turn, and
the entry in row i and column j (rij) of the matrix is the correlation of variable i and
variable j.

39



recall that the correlation coefficient is given by

rij =
1
n

∑n
i=1(x1i − x̄1)(x2i − x̄2)√

1
n

∑n
i=1(x1i − x̄1)2

√
1
n

∑n
i=1(x2i − x̄2)2

Thus rij = rji and rii = 1 for every i.

Our correlation matrix is actually a variance-covariance matrix, which has been appropri-
ately scaled. In effect, Xi has been scaled by taking into consideration its variability, so
that Xi has been replaced by Ui = Xi/σXi (divided by its standard deviation).

Our aim to is explain as much of the variability within the data as possible, using the
fewest number of components. If we start with m components, then the total amount of
variability from this scaled matrix is m. The variance associated with a component given
by

C = α1U1 + . . . + αmUm

is ∑

i6=j

αiαjCov(Ui, Uj) +
∑

i

α2
i V ar(Ui) =

∑

i 6=j

αiαjcij + 1

since the scaling restriction that we set on the components, designed to make them all of
‘unit’ length, is

m∑

i=1

α2
i = 1

For instance if every variable is perfectly correlated cij = 1 for all i, this can be shown to
be m, and we would only need to select a single component. We need to see how we select
the principal components, and how many we need to take.

9.3 Eigenvalues and Eigenvectors

If C is an m ×m matrix, as in the case of our correlation matrix above, then if we can
find a vector v (which contains a single column and m rows) such that when we multiply
the matrix C by the vector v we obtain some constant λ multiplied by v, then v is an
eigenvector of the matrix, with associated eigenvalue λ.

For those not familiar with matrix multiplication, this is equivalent to
∑

j

rijvj = λvi
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for all values of i.

There is a general method to solve these equations, involving the determinants of matrices,
which can be easily done by hand for small matrices and by computer for large. We will
see the general solution for two factors only.

The solution involves setting the determinant of the following 2× 2 matrix equal to zero.

r11 − λ r12

r21 r22 − λ
(1)

is identical to

1− λ r12

r12 1− λ
(2)

whose determinant is (1− λ)2 − r2
12. Setting this equal to zero gives

1− λ = ±r12

so λ = 1 + r12 or λ = 1− r12. It turns out that it is the larger of these two possible values
that we select. We then use one of the following equations to find the vector (either will
give the same solution). If r12 > 0 then λ = 1 + r12 and

r11v1 + r12v2 = λv1, r21v1 + r22v2 = λv2

⇒ v2 = v1
λ− 1
r12

= v1

9.4 Principal components

The principal components of a set of factors are a collection of independent combinations
of the factors, each explaining less of the variability in the data than the previous factor.
They are in fact identical to the collection of eigenvectors for our correlation matrix C,
in order of the size of the eigenvalue. In total there will be m such eigenvectors and their
eigenvalues will add up to m.

Thus in our example of two variables, the eigenvalues were 1 + r12 and 1− r12 which add
to 2 (if r11 = 1 then one component explains all of the variability) and if r12 > 0, then
v1 = v2 so that the principal component is

1√
2
U1 +

1√
2
U2
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9.5 How many components to take?

So how many components should we take? if we take all m, we can explain as much as
the original data set, but we have as many variable to work with, so we have not acheived
anything. typically we wish to take a number noticably smaller than m. One common
criterion is the Kaiser criterion, which includes components with eigenvalues greater than
1. Thus unless a component is as explanatory as one of the original variables then we
do not include it. There are other methods, such as the scree test, which is a graphical
method.
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10 Maximum likelihood estimation

10.1 Introduction

We consider random variables for which the functional form of the p.d.f. is known, but
that the precise distribution depends upon a single unknown parameter θ, say. We shall
take a random sample
X1, X2, . . . , Xn

from this distribution to provide information on what value our parameter may take.

The function of these values u(X1, . . . , Xn) used to estimate θ is called the estimator, or
point estimator, of θ. Ideally we want the actual value of this estimator, u(x1, . . . , xn) to
be close to the true value of θ.

10.2 Maximum likelihood estimators

Suppose that X follows the Bernoulli distribution with parameter p, so that it takes value
1 with probability p, and otherwise it is 0. Thus the probability mass function of X is

f(x, p) = px(1− p)1−x x = 0, 1

Now take a random sample of size n from this distribution. The probability that the
values are x1, x2, . . . , xn in that order is given by

P [X1 = x1, . . . , Xn = xn] =
n∏

i=1

pxi(1− p)1−xi = p
∑

xi(1− p)n−
∑

xi

which is the joint probability mass function of X1, . . . , Xn. This is also referred to as the
likelihood function, and considered as a function of the variable p.

L(p) = L(p; x1, . . . , xn) =
∏

f(xi, p) = p
∑

xi(1− p)n−
∑

xi

This gives the probability of any ordering of the xis for a given value of p. If we want
to estimate p from this data, a plausible way to proceed is to find the p that makes this
likelihood the biggest.

To find the maximum we differentiate with respect to p and set the derivative equal to
zero.

dL(p)
dp

=
∑

xip
∑

xi−1(1− p)n−
∑

xi − (n−
∑

xi)p
∑

xi(1− p)n−
∑

xi−1 =
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(∑
xi

p
− n−∑

xi

1− p

)
p
∑

xi(1− p)n−
∑

xi = 0 ⇒
∑

xi − np = 0 ⇒ p =
∑n

i=1 xi

n
= x̄

The corresponding statistic u(X1, . . . , Xn) = X̄ is the maximum likelihood estimator of p.

Since maximising a positive function is the same as maximising its logarithm, this will
yield the same estimator. It turns out that this is often a more convenient approach. In
the above example

ln(L(p)) =
∑

xiln(p) + (n−
∑

xi)ln(1− p) ⇒

dln(L(p))
dp

=
∑

xi
1
p
− (n−

∑
xi)

1
1− p

= 0

yielding the same result.

Note that the expectation of u(X1, . . . , Xn) = X̄ is

E[X̄] = E

[∑n
i=1 Xi

n

]
=

1
n

n∑

i=1

E[Xi] =
np

n
= p

so that the expectation of the estimator is the true value of the parameter being estimated.
If an estimator has this property it is said to be unbiased (and if it does not, it is biased).

In general we can find the likelihood for distributions with many parameters, and maximum
likelihood estimators for all of these parameters.

If X1, X2, . . . , Xn is a random sample from a distribution with p.m.f. or p.d.f. f(x; θ1, . . . , θm)
then the likelihood of the vector (θ1, . . . , θm) is given by

L(θ1, . . . , θm) =
n∏

i=1

f(xi, θ1, . . . , θm)

To find the maximum likelihood estimators, we differentiate with respect to each parameter
in turn, set equal to zero, and then solve the m simultaneous equations in m unknowns.

Suppose that X1, . . . , Xn is a random sample from a Normal (θ1, θ2) distribution, where
Ω = {(θ1, θ2) : −∞ < θ1 < ∞, 0 < θ2 < ∞}
Thus in the usual notation, θ1 = µ, θ2 = σ2. The likelihood function is

L(θ1, θ2) =
n∏

i=1

1√
2πθ2

exp

(
−(xi − θ1)2

2θ2

)
=
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(
1√

2πθ2

)n

exp

(
−

n∑

i=1

(xi − θ1)2

2θ2

)

Taking the logarithm gives

ln(L(θ1, θ2)) = −n

2
ln(πθ2)−

n∑

i=1

(xi − θ1)2

2θ2

Differentiating with respect to θ1 and θ2 in turn gives

∂

∂θ1
(ln(L(θ1, θ2))) =

n∑

i=1

(xi − θ1)
θ2

and
∂

∂θ2
(ln(L(θ1, θ2))) = − n

2θ2
+

1
2θ2

2

n∑

i=1

(xi − θ1)2

Setting these equations equal to zero gives θ1 = x̄ from the first, and substituting for θ1

in the second gives

θ2 =
1
n

n∑

i=1

(xi − x̄)2

It is possible to show that this constitutes a maximum of the likelihood function. Thus
the maximum likelihood estimators are θ̂1(= µ̂) = X̄, and

θ̂2(= σ̂2) =
1
n

n∑

i=1

(Xi − X̄)2 = V

10.3 Method of moments estimators

An alternative way to estimate the parameters of a distribution is to equate the sample
moments with the theoretical moments (which will be functions of the relevant parameters)
and rearrange the equations obtained. For example, the sample mean is X̄ whatever the
underlying distribution of the process. If the distribution is exponential with unknown
parameter λ, the theoretical mean of the distribution is 1/λ, so we equate these to get

X̄ =
1
λ
⇒ λ =

1
X̄

giving the method of moment estimator λ̂ = 1/x̄. We only needed to consider the first
moment, since there was only one parameter to estimate.
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If the distribution was gamma (α, β) then the theroetical mean and variance are

αβ, αβ2

Equating these with the sample mean and variance gives

αβ = X̄, αβ2 = S2

which can be rearranged to give

α =
X̄2

S2
, β =

S2

X̄

giving estimates

α̂ =
x̄2

s2
, β̂ =

s2

x̄

10.4 The Likelihood ratio test

In this section we will examine a test which is based upon the likelihood function. It
is assumed that the functional form of the p.d.f. is known, but depends upon one or
more unknown parameters, and we set the p.d.f. of X is f(x; θ). Letting Ω be the
entire parameter space (the possible values that the parameter can take), we test the null
hypothesis

H0 : θ ∈ ω

against the alternative hypothesis
H1 : θ /∈ ω

where ω is a subset of Ω. The likelihood ratio is

λ =
L(ω̂)
L(Ω̂)

where L(ω̂) is the maximum of the likelihood function with respect to θ in the set ω and
L(Ω̂) is that maximum in the larger set Ω.

It is easy to see that 0 < λ ≤ 1 since the numerator of λ is maximised over a subset of the
set that the denominator is, and both are positive. The null hypothesis is more plausible,
the larger the value of λ, and the critical region is given by

λ =
L(ω̂)
L(Ω̂)

≤ k
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for a suitably chosen k (probably to achieve some required significance level α).

The value of k obviously depends upon the distribution of λ. For large samples we can
use an approximation which makes this test a lot easier to work with. This approximation
concerns the distribution of −2log(λ), which will be a positive term since λ < 1. If r1 is
the dimension of the space Ω and r2 is the dimension of the subspace ω, then −2log(λ)
has an approximate χ2(r1 − r2) distribution. Using this idea we can find an approximate
value for k. We reject H0 if −2logλ is too large, namely larger than χ2

α(r1− r2) under our
approximation.

−2logλ ≥ χ2
α(r1 − r2) ⇒

logλ ≤ −1
2
χ2

α(r1 − r2) ⇒

λ ≤ exp

(
−1

2
χ2

α(r1 − r2)
)

= k
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11 An introduction to Stochastic Processes

11.1 The Poisson process

We model a situation where events occur spontaneously, at random, in time. Examples
are the emissions of α-particles in a radioactive experiment, arrivals of customers at a post
office, the passing of cars on a quiet road. The important feature of these events is that
they are unpredictable (they occur ’at random’).

The average rate λ at which events occur is constant over time (not true for post office
customers over a whole day, but good enough for a half hour period).
The occurence of events after time t is independent of what happened up to time t.
We also assume that events can only occur singly (never ≥ 2 simultaneously).

X(t), the number of occurrences of a Poisson process at time t, has a Poisson distribution
with parameter λt.

e.g. Fax messages arrive at an office at the mean rate of three per hour according to a
Poisson process.
(i) What is the probability that exactly two messages are received between 9.00 and 9.40
?
(ii) What is the probability that no messages arrive between 10.00 and 10.30 ?
(iii) What is the probability that not more than three messages are received between 10.00
and 12.00 ?

Let an hour be the unit of time that we work with. Thus we have a Poisson process of
rate λ = 3. The number of messages in time t is thus Poisson (3t).
(i) 9.00 to 9.40 - the number of calls is Poisson (3× 2/3 = 2), so

P (2messages) = e−2 22

2!
= 0.271

(ii) 10.00 to 10.30 - the number of calls is Poisson (3× 0.5 = 1.5), so
P(0 messages) = e−1.5 = 0.223

(iii) 10.00 to 12.00 - the number of calls is Poisson (3× 2 = 6).
P (X ≤ 3) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) =

e−6 60

0!
+ e−6 61

1!
+ e−6 62

2!
+ e−6 63

3!
= 0.151

If T is the time until the next event from a given starting point (since the process is

48



’memoryless’ it does not matter when this starting point is), then T has an exponential
distribution with parameter λ.

e.g. In the previous example
(iv) What is the probability that the first message after 10.00 occurs before 11.00 ?

This is a Poisson process with rate 3, t = 1, and so P (T ≤ 1) = 1− e−3×1 = 0.9502

11.2 Birth processes

11.3 The simple birth process

Consider a population where each individual alive in the population generates further
offspring according to a Poisson process at rate β (new individuals are produced asexually).
We assume that the initial population size is x0 and that there are no deaths, so that the
population increases with time. It can be shown that the distribution of X(t), the number
of individuals alive at time t, follows a negative binomial distribution with parameters
e−βt and x0.

Note that if x0 = 1, this becomes the geometric distribution with parameter e−βt.

e.g. A population starts at time 0 with a single individual. Let the birth rate be two per
week.
(i) What is the probability that after three weeks there are exactly two individuals?
(ii) What is the probability that after one week there are between two and four individuals
(inclusive)?

(i) x0 = 1, β = 2 per week, and t = 3 i.e.

p2(3) = (10)e
−2×3(1− e2×3)1 = e−6(1− e−6) = 0.00247

(ii) x0 = 1, β = 2, t = 1.P [2 ≤ X ≤ 4] = P (X = 2) + P (X = 3) + P (X = 4) =
e−2(1− e−2) + e−2(1− e−2)2 + e−2(1− e−2)3 = 0.3057

11.4 The pure death process

We consider a population in which there are no births, just deaths. Observations start
with x0 individuals alive at time 0 - these individuals die independently of each other, and
eventually the population dies out completely.

This model is approached best by considering every individual separately. The probability
that an individual is alive at time t, Pa(t) = Ae−νt = e−νt. We can use the binomial
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theorem to deduce that the probability that j individuals are still alive at time t, is given
by

pj(t) = (e−νt)j(1− e−νt)x0−j(x0
j )

In particular the probability that the population is extinct by time t is

p0(t) = (1− e−νt)x0

e.g. A population starts at time 0 with 4 individuals. The population follows a pure
death process at a rate of 1 every 2 days.
(i) Find the probability that there is exactly one individual alive after a week.
(ii) Find the probability that the population has died out after a week.
(iii) Find the probability that the population has died out after two weeks, given that the
total number of survivors after one week was 2.

(i) t = 7, ν = 0.5 i.e.
p1(7) = e−3.5(1− e−3.5)3(41) = 0.1102

(ii) t = 7, ν = 0.5 ⇒
p0(7) = (1− e−3.5)4 = 0.8846

(iii) The process is memoryless, so that
P(0 after 2 weeks/ 2 after 1 week) = P(0 after 1 week/ 2 after 0 weeks) =

(1− e−3.5)2 = 0.9405

11.5 Birth and death processes

We shall now consider a population model, similar to those of the last chapter, but with
both births and deaths. In the Poisson process and the simple birth process the only
change possible is an increase in the population. In the pure death process the population
could only be reduced. Here both may occur.

11.6 The simple birth-death process

In the previous section we considered the simple birth process and the pure death process.
Now we shall combine the two.
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In the simple birth process, each individual gives birth at rate β, so that when the popu-
lation is of size x, the birth rate is βx. In the pure death process individuals die at rate
ν, so that the death rate is νx. We could look for an expression for X(t), the number of
individuals alive at time t. This turns out to be quite complicated to do; we can answer
some simpler questions more easily.

For instance, what is the probability that the population eventually becomes extinct? If
β ≤ ν, the population is certain to become extinct. If β > ν, the probability of eventual
extinction is (

ν

β

)x0

If we are not interested in the time that a particular event occurs, but only in its type (is
it a birth or a death), we can simplify the model. Relabelling the time of the occurrence
of the ith event as i, we obtain a new random process {Xi; i = 0, 1, 2 . . .} in discrete time.
This process is said to be embedded in the original process, i.e. is an embedded process. Xi

is the size of the embedded process at time i, and of the population immediately after the
ith change.

p =
β

β + ν

where p is the probability that any particular event is a birth. We have what is called a
simple random walk with

P [Xi = x + 1/Xi−1 = x] =
β

β + ν

and an absorbing barrier at zero. This means that we can use standard results to show;

the expected number of events to extinction is

x0(ν + β)
ν − β

β < ν

and is infinite if β ≥ ν.

The probability that the size of our population reaches m individuals at some point (before
possibly becoming extinct), has probability

1−
(

ν
β

)x0

1−
(

ν
β

)m β 6= ν
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x0

m
ν = β

e.g. If a simple birth-death process starts with 5 individuals, what is the probability that
it reaches 10 given that it becomes extinct if
a) β = 4, ν = 6?
b) β = 9, ν = 6?

a) P(reaches 10) =

1−
(

6
4

)5

1−
(

6
4

)10 = 0.1164

The process is certain to become extinct, so that P(reaches 10 and becomes extinct) =
P(reaches 10) = 0.1164

b) P(reaches 10) =

1−
(

6
9

)5

1−
(

6
9

)10 = 0.8836

P(reaches 10 / becomes extinct)=

P(extinction/reaches 10)P(reaches 10)/P(extinction)

P(extinction)= (
6
9

)5

= 0.1317

P(extinction/reaches 10)= (
6
9

)10

= 0.0173

Thus P(reaches 10 /becomes extinct)=

0.0173× 0.8836
0.1317

= 0.116

So if we know that the population becomes extinct, it is unlikely to have reached 10 before
doing so.
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12 Markov Chains

in this section we shall discuss Markov chains with a finite number of states. this will be
central to a lot of what follows in later sections. A Markov chain is defined by a number
of states
E1, . . . , En

, one of which is occupied at a given time. We follow the process from time
t = 1, 2, 3, . . .
As time moves a step forward, the process moves from one state to another (possibly
staying at the same state) following some straightforward probabilistic rules.

The process is memoryless and homogeneous in time. Thus the probability of moving from
Ei at time t to Ej at time t + 1 takes the same value for all t. So only the current state
matters in determining future movements; the earlier history of the process is irrelevant.

12.1 The transition matrix

If we are in state Ei then the probability that the process moves to state j in the next
time step is labelled pij for each pair of states i and j. For convenience we group all of
these transition probabilities together into a single matrix, labelled P .

E1 E2 E3 . . . En

E1 p11 p12 p13 . . . p1n

E2 p21 p22 p23 . . . p2n

. . . . . . . . . . . . . . . . . .
En pn1 pn2 pn3 . . . pnn

(3)

the entry in row i and column j os pij , the probability of moving form i to j. Since
wherever the process stands at time t, it must end up at precisely one state at time t + 1,
the probabilities in every row must sum to 1, i.e.

n∑

j=1

pij = 1

for every value of i.

It is easy to see that the random walk from the previous section (where at each step
except 0 there was a probability p of increasing by 1 and q = 1− p of decreasing by 1) has
transition matrix
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0 1 2 . . . k − 1 k k + 1 . . .

0 1 0 0 . . . 0 0 0 . . .
1 q 0 p . . . 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
k 0 0 0 . . . q 0 p . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

(4)

12.2 Absorbing states

The random walk example that we discussed above is a Markov chain with an absorbing
state, since the state ‘0’ cannot be left when it is reached. Such a Markov chain is easily
recognised; if its transition matrix has a ’1’ on its leading diagonal, then the corresponding
state is an absorbing one; if there are no 1s on the leading diagonal, then it does not contain
an absorbing state.

For a Markov chain with at least one absorbing state, sooner or later one of its absorbing
states will be entered and never left. We may wish to consider what is the probability
that we enter a given state, or the expected time to entering a state.

For example, the probability that the size of the population from our birth and death
process from Section 11 reaches m individuals at some point (before possibly becoming
extinct), was given to be

1−
(

ν
β

)x0

1−
(

ν
β

)m β 6= ν

This was found by using the random walk transition matrix from above, with the single
change that m becomes an absorbing state, so that row m is all 0s except pmm = 1.

If a Markov chain has no absorbing states, the questions that we can ask about it are more
varied. To simplify matters, and because these are the key properties of the processes used
in Monte Carlo Markov Chains from later sections, we concentrate on Markov chains which
are finite, aperiodic and irreducible. A chain is finite if it has a finite number of possible
states (as opposed to the birth and death process). A chain is aperiodic if there is no state
that can be returned to at regular intervals only (for instance even time points only). For
instance
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0 0 0.6 0.4
0 0 0.3 0.7

0.5 0.5 0 0
0.2 0.8 0 0

(5)

is periodic. If a Markov chain has no 0s down its leading diagonal, then it is aperiodic. A
chain is irreducible if whatever state we are in, we can reach some other state from that
state from some path. For instance

0.2 0.2 0.2 0.4
0.2 0.5 0.2 0.1
0 0 0.5 0.5
0 0 0.6 0.4

(6)

is reducible, since once states 3 or 4 have been reached, the process can never return to
states 1 or 2.

12.3 Stationary distributions

Suppose that a Markov chain has a transition matrix P which has probability φj of being
in state Ej at time t, j = 1, . . . , n. Suppose that

φj =
n∑

i=1

φipij j = 1, 2, . . . , n

so that the probability of being in state j at time t+1 is still φj for all j. The probability
distribution (φ1, φ2, . . . , φn) is stationary.

To find a stationary distribution, we must solve the set of equations above. For example,
for the matrix

0 0 0.6 0.4
0 0 0.3 0.7

0.5 0.5 0 0
0.2 0.8 0 0

(7)
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we obtain
φ1 = 0.5φ3 + 0.2φ4 . . . (i)
φ2 = 0.5φ3 + 0.8φ4 . . . (ii)
φ3 = 0.6φ1 + 0.3φ2 . . . (iii)
φ4 = 0.4φ1 + 0.7φ2 . . . (iv)

The first two equations yield
0.6φ4 = φ2 − φ1 . . . (v)((ii)− (i))
1.5φ3 = 4φ1 − φ2 . . . (vi)(4(i)− (ii)
1.24φ1 − 0.58φ2 = 0 ⇒ φ2 = 2.1379φ1(0.6(iv)− (v)
Thus from (v) φ4 = 1.8965φ1

and from (vi) φ3 = 1.2414φ1

So φ1(1 + 2.1379 + 1.2414 + 1.8965) = 1 ⇒ φ1 = 0.1593 giving
φ2 = 0.3407, φ3 = 0.1978, φ4 = 0.3022

Notice that we could have solved this more easily by observing that since the process
alternates between states 1,2 and 3,4 we must have φ1 + φ2 = φ3 + φ4 = 0.5

The stationary distribution of

0.2 0.2 0.2 0.4
0.2 0.5 0.2 0.1
0 0 0.5 0.5
0 0 0.6 0.4

(8)

can be found easily since it is clear that φ1 = φ2 = 0. Sovling for the other two strategies,
gives φ3 = 6/11, φ4 = 5/11

12.4 Markov chains in continuous time

A Markov chain in continuous time can be defined in terms of the transition rates between
the states, so that the rate from state Ei to Ej is given by qij . In fact each of the models
from Section 11 are continuous time Markov chains. if we are not worried about the
specific times of events, but just the sequence, we can construct an embedded process
in precisely the same way as we did in that section, which is then a Markov process in
discrete time, with a transition matrix given by

pjk =
qjk∑n

i=1,i6=j qji
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Exercise: Show this.

Stationary distributions are found in the same way as before. In fact, the equations become

φj =
n∑

i=1

φiqij j = 1, 2, . . . , n

So for the birth and death process of Section 11, for j > 0, qj,j+1 = β, qj,j−1 = ν and
qji = 0 otherwise, and we obtain

pj,j+1 =
qj,j+1∑n
i=1 qji

=
β

β + ν

pj,j−1 =
qj,j−1∑n
i=1 qji

=
ν

β + ν

and pji = 0 otherwise
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13 DNA sequence analysis

13.1 Analysing a single sequence

Before we can analyse a sequence, we need to determine what the sequence is. It turns
out that it is not possible to accurately identify long DNA sequences. Rather, many
overlapping small sequences are taken (of the order of 500 bases). Then these pieces need
to be assembled into a single long sequence by matching overlapping regions on to each
other; such an assemblage is called a contig. To do this a sufficiently large collection
of such short subsequences need to be collected. This is called shotgun sequencing. A
sequence has nX coverage if for the original sequence of length G, the total length of all
the fragments is nG. To expect to cover 99% of the sequence, it can be shown that we
need to have 4.6X coverage. This is the technique that has been used to sequence the
whole human genome.

FIGURE 13.1

Suppose that the DNA sequence that we are mapping has length G, and we have N
fragments each of length L, then the coverage is given by

a =
NL

G

The mean proportion of the sequence covered by one or more fragments is the probability
that a random point has its left hand end in the interval of length L immediately to the
left of this point.

FIGURE 13.2

On the (reasonable) assumption that L is a lot smaller than G, the number of fragments
whose left-hand edge falls in this region is Binomial with parameters N and L/G. The
probability that no fragment lies in this interval is thus

(
1− L

G

)N

≈ e−a

The probability that the point is covered is thus 1 − e−a. When a = 4.6 this leads to a
probability of 0.99, as above.

13.2 Modelling of DNA sequences

The structure of DNA can be thought of as long sequences of nulcletides of four types
labelled a, g, c and t. We are interested in the structure of these sequences, based upon
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the relationship between the type of nucleotide which appears at neighbouring sites. The
sequences comprise different regions, where the structure of the components can vary from
region to region. The simplest ‘structure’ conceivable is complete independence, where the
nucleotide at every site is independent of all others, and identically distributed with them.
A more plausible model is based upon a Markov structure; namely that neghbouring
nucleotides are correlated, but that only immediate neighbours influence the distribution
at a site. The following table shows the kind of data that we are interested in for the
Markov model.

a g c t Total
a Y11 Y12 Y13 Y14 Y1.

g Y21 Y22 Y23 Y24 Y2.

c Y31 Y32 Y33 Y34 Y3.

t Y41 Y42 Y43 Y44 Y4.

Total Y.1 Y.2 Y.3 Y.4 Y

Such data can be used to estimate the transition matrix which defines our Markov model.
In particular we can test whether the transition probabilities are identical for each nu-
cleotide using a χ2 test as used for standard categorical data.

Q =
4∑

i=1

4∑

j=1

(Yij − Yi.Y.j/Y )2

Yi.Y.j/Y

will have an approximate χ2 distribution with (4− 1)(4− 1) = 9 degrees of freedom under
the null hypothesis of identical transition probabilities.

We may be interested in the possibility of long repeats of a particular nucleotide, say a.
Suppose that for a particular DNA sequence, the probability of a appearing at any given
site is p. After any given occurrence of a nucleotide other than a (a ‘failure’) there will be
a run of Y a’s (‘successes’); this length can be zero if a second failure follows the first. Y
has a geometric distribution with parameter p, i.e.

P (Y = y) = (1− p)py

It can be shown that if n such (independent) sequences occur, and Ymax is the largest of
these, then

P (Ymax ≥ y) = 1− (1− py)n

In a DNA sequence of length N, the number of such sequences of a’s is approximately
n = N(1− p) (the number of failures) so that

P (Ymax ≥ y) = 1− (1− py)N(1−p)
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This gives the p-value of the test of the null hypothesis that every successive nucleotide is
independent.

e.g. if N = 100000, p = 0.25 and the observed ymax = 10, then P is as follows:

P = 1− (1− 0.2510)75000 = 0.0690272

13.3 Comparing two DNA sequences

Suppose that we have two DNA sequences. One way of comparing the two is to test
whether the proportion of each nucleotide is the same in each sequence. This follows a
typical χ2 test for tabular data as above, where the table is

a g c t Total
S1 Y11 Y12 Y13 Y14 Y1.

S2 Y21 Y22 Y23 Y24 Y2.

Total Y.1 Y.2 Y.3 Y.4 Y

In this case there are (2− 1)× (4− 1) = 3 degrees of freedom.

We are often interested in finding alignments between two sequences. For example, suppose
that we have the sequences cgggtatccaa and ccctaggtccca which may be descended from
a single common ancestral sequence (changes occur, by means of substitutions, deletions
and insertions). We try to find the best match up between the two sequences, where gaps
can be introduced into either sequence (as deletions and insertions alter the position of
whole sub-sequences).

The following is an example of an alignment between the two sequences
c g g g t a − − t c c a a
c c c − t a g g t c c c a

How do we decide whether two sequences are well aligned. one way is to give an alignment
score to any alignment between two sequences. For example we can use

number of matches-number of mismatches-number of gaps

It makes sense to penalise the use of gaps as this gives us a lot more options in our
sequences, and we could get a perfect match if allowed to use an unlimited number of gaps
for free. Scoring schemes can be more complicated, of course, but in some cases this one
works well.

Once we have a scoring system, we can compare the possible alignments and choose the
one with the highest score. If no gaps are allowed, then we can do this for every possible
alignment for 2 sequences. The use of gaps makes this not feasible; we need to use an
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algorithmic method. One such algorithm is the Needleman-Wunsch algorithm. This is
an example of a dynamic programming algorithm. We will come back to this and related
algorithms at the end of the course.

For example, if we use the above scoring mechanism on the alignment
c t t a g − g − −
c a t − g a g a a
the score is 4− 1− 4 = −1.

One related alignment problem is the linear gap model. Given two sequences, we try to
find the subsequence of the longer one that can be aligned with the shorter one in the best
way (where gaps are allowed).

Let x = X1X2 . . . Xm be the shorter sequence and y = Y1Y2 . . . Yn be the longer one. Also
denote the subsequence of y given by YkYk+1 . . . Yj as yk,j . To get a value of B(x, yk,j),
the score of the best alignment that we can find between x and yk,j , the running time of
the Needleman-Wunsch algorithm is of the order of m(j − k).

We want to find the best alignment overall, given by

max(B(x, yk,j) : 1 ≤ k ≤ j ≤ n)

If we did this exhaustively, it would take time of the order of mn3. It is possible to use
another algorithmic approach to improve this considerably, to the order of mn.

13.4 Protein sequences and substitution matrices

When looking at DNA sequences, such simple scoring systems are often effective. However
for protein sequences, some substitutions are much more likely than others; an alignment
algorithm that takes this into account is a lot more effective. There are two main type
of substitution matrix, PAM (Accepted Point Mutation) and BLOSUM (BLOcks SUbsti-
tution Matrices) with rather contrived acronyms, as you can see. We will consider PAM
substitution matrices only.

An accepted point mutation is the substitution of one amino acid by another that is
‘accepted’ by evolution, so that effectively this change happens for the whole of a given
species. A PAM1 transition matrix is the Markov transition matrix applying to the time
period in which we expect 1% of amino acids to undergo accepted point mutations within
the given species.

We can find transition matrices for larger distances by raising the matirx to a given power;
transitions for n PAM units is given by PAMn,
Mn = Mn

1
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Suppose that all amino acids are equally frequent (so that pj = 0.05), that all are equally
likely to be substituted by some other amino acid in any given time, and all substitutions
are equally likely. Then the PAM1 matrix M1 = (mij) is given by,

mii = 0.99,mij =
0.01
19

i 6= j

For this matrix it can be shown that these probabilities in the PAMn matrix become

m
(n)
ii = 0.05 + 0.95(94/95)n

m
(n)
ij = 0.05− 0.05(94/95)n

For n = 10 for example, we obtain the probability that any given amino acid is unchanged
as

m
(10)
ii = 0.05 + 0.95(94/95)10 = 0.9046

and the probability that it is replaced by any given alternative amino acid is

m
(10)
ij = 0.05− 0.05(94/95)10 = 0.00502

Of course for real populations these probabilities are not so evenly spread, as some amino
acids are more common than others, and transition rates vary between sites etc. Data can
be used to estimate the values in the PAM1 matrix.

Question: If we find amino acid, A, at a point in the sequence, what is the probability
that 2 PAM units ago it was a B?
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14 Monte Carlo Markov Chains I

In this section we shall introduce a variant on the Markov chain model and consider some
computational statistical techniques which will lead us to the mainstream Monte Carlo
Markov chain methods of the next section. The methods of this section, both theoretical
and practical, have a wider applicability as well.

14.1 Hidden Markov models

A Hidden Markov model is an extension of the Markov chain idea that we met in the
previous sections. Suppose that we have a Markov chain where states are visited according
to a transition matrix P , so that a sequence of states are visited which we label q1, q2, q3 . . ..
At each state a symbol is emitted from some collection of possibilities, so that we have
a sequence of symbols O1, O2, O3, . . .. We can label the sequence of qis by Q and the
sequence of Ois by O. Often we know the sequence O but we do not know the underlying
sequence of states Q; the sequence Q is hidden.

We may be able to estimate what the underlying sequence Q is from the information that
we have in O, if each state does not emit the symbols with the same probabilities as all of
the other states. To do this we thus need two pieces of information; the transition matrix
P and a collection of probability distributions

Example 14.1. Consider the Markov chain with transition matrix

0.9 0.1
0.8 0.2

(9)

where the process is equally likely to start in either state. There are only two possible
symbols that can be emitted 1 and 2; state S1 emits 1 with probability 0.5 (and so 2 with
probability 0.5), state S2 emit 1 with probability 0.25 (and so 2 with probability 0.75).

Suppose that we observe the sequence 2,2,2. What is the most plausible underlying se-
quence? There are 8 possibilities, each of which is written below with the probability of
obtaining the observed sequence AND underlying sequence calculated (i.e. P (Q

⋂
O)).

S1 → S1 → S1 0.5× 0.5× 0.9× 0.5× 0.9× 0.5 = 0.0506

S1 → S1 → S2 0.5× 0.5× 0.9× 0.5× 0.1× 0.75 = 0.0084

S1 → S2 → S1 0.5× 0.5× 0.1× 0.75× 0.8× 0.5 = 0.0075

S1 → S2 → S2 0.5× 0.5× 0.1× 0.75× 0.2× 0.75 = 0.0028
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S2 → S1 → S1 0.5× 0.75× 0.8× 0.5× 0.9× 0.5 = 0.0675

S2 → S1 → S2 0.5× 0.75× 0.8× 0.5× 0.1× 0.75 = 0.0113

S2 → S2 → S1 0.5× 0.75× 0.2× 0.75× 0.8× 0.5 = 0.0225

S2 → S2 → S2 0.5× 0.75× 0.2× 0.75× 0.2× 0.75 = 0.0084

The best sequence maximises

P (Q|O) =
P (Q

⋂
O)

P (O)

which is equivalent to maximising the above. Thus the most plausible sequence is S2, S1, S1.

An HMM consists of the following five components

(1) A set of n states S1, . . . , Sn

(2) An alphabet of distinct observation symbols A = {a1, . . . , aM}
(3) The transition probability matrix P = (pij) where

pij = P (qt+1 = Sj |qt = Si)

(4) Emission probabilities for each state: if the process is in state Si then
bi(aj) = P (Si emits aj), so

∑M
j=1 bi(aj) = 1

(5) An initial distribution of states πi = P (q1 = Si)

Components 1,2 and 5 define the underlying Markov chain.

Thus in our example n = 2, M = 2 with a1 = ‘1′, a2 = ‘2′, P is the 2 × 2 matrix (e.g.
p12 = 0.1), b1(a1) = 0.5, b1(a2) = 0.5, b2(a1) = 0.25, b2(a2) = 0.75.
In this simple example it was possible to find our solution by hand,. However real problems
often have long sequences with many states, so such a complete calculation cannot be done
even by computer.

14.2 Hidden Markov models and multiple sequence alignments

The following figure illustrates how a Hidden Markov Model can be used to model a protein
family.

FIGURE 14.1

The example has length 5, although any length is possible. States are labelled mj , ij and
dj . m, i and d stand for match, insert and delete. We start in state m0 and move from
left to right ending on m5, through some path denoted by the arrows.
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Emissions are made from all states on the path through our diagram except the first (m0)
and last (m5, here). Our alphabet consists of the twenty amino acids, plus a dummy
symbol δ representing delete. Each match and insert state has its own distribution over
the 20 amino acids and cannot emit δ, a delete state must emit δ.

It could be that all emissions in m and i are uniformly likely, which would mean that
random sequences would result, or ms could have one distribution, and is another. It is
possible to find the most likely path through the model by using an algorithm, such as
the Viterbi algorithm.

For example, consider the sequences CAEFDDH and CDAEFPDDH and suppose that
their most likely paths are
m0m1m2m3m4d5d6m7m8m9m10 and
m0m1i1m2m3m4d5m6m7m8m9m10 respectively.

The alignment induced by this model is found by aligning positions generated by the same
state, as follows:

FIGURE 14.2

This leads to the induced alignment
C − A E F − D D H
C D A E F P D D H

Consider an extension of this example, with more than two sequences. Suppose that we
have sequences CAEFTPAVH, CKETTPADH, CAETPDDH, CAEFDDH, CDAEFPDDH
and the corresponding paths are

m0m1m2m3m4m5m6m7m8m9m10

m0m1m2m3m4m6m7m8m9m10

m0m1m2m3d4m5m6m7m8m9m10

m0m1m2m3m4d5d6m7m8m9m10

m0m1i1m2m3m4d5m6m7m8m9m10

The induced alignment is
C − A E F T P A V H
C − K E T T P A D H
C − A E − T P D D H
C − A E F − − D D H
C D A E F − P D D H
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14.3 Bootstrapping methods

With the advent of fast powerful computers, it has become possible to use alternative
methods to test statistical hypotheses and find confidence intervals.

We use the empirical probability distribution of a set of data. If we have a set of data
values x1, . . . , xn then the empirical probability distribution of our random variable X is

Pe(X = x) =
mx

n

where mx is the number of times x appears in our data set.

Question: What is the expectation of the value of the proportion of the data less than or
equal to a given x (this proportion is the empirical distribution function at x)?

Suppose that we want to find an estimate of the mean of the underlying distribution and
a confidence interval for this mean. one way to do this is given in Section 2 of the course.
This procedure assumed that the sample mean X̄ has a normal distribution (at least
approximately). If this is not the case, then the methodology used is not valid. The aim
of the bootstrap method is to provide a way of finding estimates and confidence intervals
which do not need this assumption.

Suppose that we start with the data set x1, . . . , xn. The first step of the bootstrap involves
sampling from the this collection n times, with replacement. Some observations from the
original data may not appear at all, others will appear once, others twice etc.

Example 14.2 - We consider the following simple example of n = 12 data points (these
have actually been randomly generated from an exponential distribution with parameter
0.5, and so mean 2)

0.843, 0.977, 0.003, 3.159, 1.027, 1.009, 3.331, 0.235, 0.476, 0.398, 4.597, 0.434

Each of the 12 observations in each bootstrap sample is selected from the above 12 num-
bers, each being chosen at random with probability 1/12. The number of times the value
0.843 appears in a sample, for example, follows a binomial distribution with parameters
(12, 1/12). On average it appears once (occurring with probability 0.384), but it may not
appear at all (probability 0.352) or more than once (the probabilities that it appears 2
and 3 times are 0.192 and 0.058 respectively).

From this sample we replace x1, . . . , xn by the bootstrap sample values, to give ¯xB1, the
mean of the first bootstrap sample. The procedure is then repeated a large number R
times, leading to R bootstrap estimates

¯xB1, . . . , ¯xBR
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These can be thought of as giving an empirical distribution of X̄. The average of the
bootstrap estimates is the bootstrap estimate of the mean.

Example 14.2 continued - we shall now take 20 bootstrap samples from the above distri-
bution (recall that we sample with replacement), giving the mean value for each sample.
These means are as follows.

Means - 1.510, 1.685, 0.952, 0.961, 1.230, 0.446, 2.211, 1.921, 1.295, 1.669, 0.906, 0.825,
1.495, 1.462, 1.326, 1.261, 1.157, 1.194, 1.262, 1.425

A 95% confidence interval for the mean of the population can be obtained from the above,
and is (0.659, 2.218).
Note that this contains the true mean that we know to be 2, due to the method that the
data was generated.

Typically bootstrapping is useful when there is good reason to think that the samples that
we take may be significantly non-normal. Thus we can find confidence intervals for a wide
range of parameters that do not behave as nicely as means. Thus in the above example
we may be interested in the variance of the data. With a small sample, the distribution of
the sample variance is quite different to the normal distribution. There is an alternative
way to carry out tests for the variance that we have seen before; but how about the mean
of the reciprocal of the data 1/xi for example. Any function θ(X1, . . . , Xn) can be treated
in the same manner.

It is possible to use the bootstrap procedure with more than one sample. For instance
we may be interested in finding a confidence interval for the difference of two means, but
not be confident that the underlying variances of the distributions are equal, or that the
data is sufficiently close to being normally distributed. The easiest way to do this is to
generate R pairs of samples from each data set independently using the method above. If
we have n data points from sample 1 and m from sample 2, each bootstrap sample (pair)
also contains n and m data points, the mean of each being taken and the difference of
the means being the summary statistic from the data. These differences for each sample
can then be considered together to provide an estimate and confidence interval for the
difference of the means. Note that there are also more elaborate ways to do this, which
are preferred by some researchers.
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15 Monte Carlo Markov Chains II

In this section we consider two of the most important methods of Monte Carlo Markov
Chains, together with an example of their use which relates to earlier problems in sequence
analysis. We shall show in each case the mathematical detail of how the method works.

15.1 The Metropolis-Hastings Algorithm

The aim of the Metropolis-Hastings Algorithm is to construct a Markov Chain which is
both aperiodic and irreducible, which has a given stationary distribution.

Let us suppose that we have a stationary distribution v, which is of course a vector of
probabilities defined on some number of states n. To construct our Markov Chain, firstly
we choose some set of constants qij i, j = 1, . . . , n
such that qij > 0 for all i, j and

∑
j qij = 1 for all i. We shall now define aij by

aij = min

(
1,

vjqji

viqij

)

We define pij by
pij = qijaij i 6= j

and
pii = 1−

∑

j 6=i

pij

Since qij > 0 we can see that pij > 0 for all i, j pairs (including when i = j although
this is not as immediately obvious). Thus the Markov Chain defined by the transition
probabilities is aperiodic and irreducible. It just remains to show that the stationary
distribution of this Markov Chain is v.

This is shown by demonstrating that vjpji = vipij for all i, j pairs. This is called the
detailed balance requirement, and is a sufficient condition for v to be a stationary distribu-
tion of the process. Essentially, the rate of movement from state i to state j is balanced
by the rate from state j to state i, and so the process is in (stochastic) equilibrium.

If we suppose that vjqji < viqij , then from above we have

aij =
vjqji

viqij
, pij =

vjqji

vi
, aji = 1, pji = qji
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and it follows that vjpji = vipij .
If the reverse inequality holds the reasoning is identical; if vjqji = viqij then it also follows
easily.

This method can be extended to the case where some qij are zero (important for the
following section) provided that whenever qij > 0, so is qji.

Why should we wish to do this? We may wish to take a random sample from this dis-
tribution, or to find the state with the largest probability from the distribution. But for
any reasonably sized number of states, it is easier to compute these from the distribution
directly rather than construct the Markov Chain and let it run through many iterations.
The answer to this question is that sometimes the number of states is just so large, and
the definition of the probabilities of being in the state given in a sufficiently indirect way,
that this is impossible. The Markov chain idea can give us a shortcut round this problem,
as we shall see in the next section.

15.2 Gibbs Sampling

Suppose that Yi, i = 1, . . . , k are discrete finite random variables, and Y is the random
column vector made up of the Yis, i.e. (Y1, . . . , Yk)T . We can define the distribution of
Y, PY(y), the probability that Y takes the vale y (i.e. Yi = yi for all i). We assume that
PY(y) > 0 for all values of y.

We will construct a Markov Chain whose states are the possible values of Y. We shall
order the vectors y in some manner, to give vectors numbered from 1 to n. We equate
vector j with state j in our Markov chain.

We define the Markov chain as follows;
We consider each of the k components of the vector in turn, deciding on a new value for
this component only in each step, which may be the same as the old one [alternatively
we pick one of the k components at random and only perform a single step -see the next
section] . We construct a transition matrix P (1) for the first step as follows. If vectors i

and j differ in any component but our chosen one, then we set p
(1)
ij = 0.

If they differ by this first component only (or not at all) we define

p
(1)
ij = P (Y1 = y∗1|Y2 = y2, . . . , Yk = yk) =

P (Y1 = y∗1, Y2 = y2, . . . , Yk = yk)
P (Y2 = y2, . . . , Yk = yk)

where vector i is (y1, y2, . . . , yk) and vector j is (y∗1, y2, . . . , yk).

After we have changed the first component (or left it the same) we move on to the second
component, performing the same operation above to obtain the transition matrix for this
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component P (2) and so on. A move in the full Gibbs process is a sequence of k moves, one
for each component, and thus the full transition matrix for the Gibbs sampler is just the
product of all of these transition matrices for each step

P = P (1)P (2) . . . P (k)

Exercise: Explore the simplest case of this idea, with a two-dimensional vector, each
position having two elements only. This is the situation in exercise E2.

This Markov chain is irreducible and aperiodic, since pii > 0 for all i and every state can
be reached by a finite number of steps from any other (it is possible to move between two
vectors which differ in l places in l steps).

It also has stationary distribution PY(y). Choosing qij = pij , we can show that both
vjqji and viqij are equal and so aij = 1 and pij = aijqij , matching the previous section,
confirming the above stationary distribution.

15.3 Gibbs Sampling for multiple sequence alignments

Suppose that we wish to compare more than two sequences to try and find the best
alignment between them. If we have N sequences and they are each of approximate
length L, then the number of (global) alignments is of the order of

(2L)N

which can easily be far too large to handle in the conventional manners described in section
13. We shall use the Gibbs sampling method from the previous section to try to find good
alignments (it is usually too ambitious to try to find the ”best” alignment out of so many
possibilities). We consider the example of protein sequences.

Label the amino acids in some order 1, . . . , 20. Supposing we now have N protein sequences
of lengths L1, . . . , LN , the aim is to find N segments, one form each sequence, each of some
fixed length W which in some way are similar to each other. There are

N∏

i=1

(Li −W + 1)

possible choices for the locations of these N segments. We assume that N and the Lj are
large enough that a simple algorithmic approach is not feasible. We shall consider each of
these possible choices as a state in a Markov chain.
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The procedure works as follows. We follow a series of simple steps, moving from one state
of the Markov chain (i.e. one array) to another. The figures below illustrate this. In
Figure 15.1 we choose the third sequence, so the third row is changed in step 1, and the
first sequence (so the first row) in step 2.

FIGURE 15.1

In fact each step has two parts; selection of the row to be changed, and the manner of its
change. Figure 15.2 shows the first part of the step only. Which row is chosen is a purely
random choice [or we could pick each row in turn as described in the previous section].
The aim of the second part, is to improve the overall alignment, by choosing one of the
Li −W alternative segments.

FIGURE 15.2

Suppose that in the first reduced array of Figure 15.2 (i.e. with row 3 removed) amino
acid j occurs cij times in the ith column. From these values, we find a probability estimate

qij =
cij + bj

N − 1 + B

where the bj are what are called pseudocounts. They can be chosen in a number of ways,
but one sensible choice is bj = pj , the background frequency of amino acid j.

Suppose that the amino acid sequence in a given segment is x= x1, x2, . . . , xW . The
probability of this ordered set under the population amino acid frequencies is

Px = px1px2 . . . pxW

The estimated probability of this segment under the N − 1 segments in our reduced array
is

Qx = q1x1q2x2 . . . qWxW

The likelihood ratio (which here is an estimate of how much more likely our sequence is
due to similarity to the other sequences over pure chance, is LR(x) = Qx/Px. We select
segment x with probability

LR(x)
∑Li−W

m=1 LR(m)

where the denominator is the sum of all the likelihood ratios of the Li − W possible
segments.

As time goes on, we should see better and better alignments appearing more frequently.
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The relative entropy between q∗ij(s) and pj is

W∑

i=1

20∑

j=1

q∗ij(s)log

(
q∗ij(s)

pj

)

States for which the relative entropy is high are those which represent good alignments.
Note that this entropy is approximately a linear function of the logarithm of the probability
of being in state s

C
W∏

i=1

20∏

j=1

(
q∗ij(s)

pj

)cij(s)

This method is an example of the Gibbs sampling method that we described above. Each
state of the process is a vector with N elements (one for each of our sequences) and there
are a finite number of possible values for each element Li −W + 1 for element i.

FIGURE 15.3

Each step of the process changes a single sequence only (i.e. changes a single element of
the vector) so that pij = 0 if elements i and j differ by more than a single element. Since
the probability expression

P (Y1 = y1, Y2 = y2, . . . , Yk = yk)

is almost identical to the likelihood ratio LR(x) with the appropriate probabilities defined
above, it follows that this is essentially an example of a Gibbs sampling procedure.
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16 Genetics

16.1 Hardy-Weinberg equilibrium

The Hardy-Weinberg principle states that, under certain conditions, after a single gen-
eration of random mating, the genotype frequencies at a single locus will be fixed at a
particular equilibrium value, which is the Hardy-Weinberg equilibrium.

Suppose that there are two alleles at a given locus, labelled by A and a, and the proportions
of these in the population are p and q = 1 − p respectively. A population is in Hardy-
Weinberg equilibrium if the proportion of zygote AA in the population is p2 and the
proportion of the heterozygote Aa is 2pq. These proportions are those that would be
obtained if the genes were selected from the population at random; the number of As at
the locus is simply Binomially distributed, with parameters 2 and p.

Exercise: Show that after a generation of random mating a population with two alleles is
in Hardy-Weinberg equilibrium, irrespective of the original distribution of zygotes.

The original assumptions for a population to be in Hardy-Weinberg equilibrium were that
the population is; diploid, sexually reproducing and randomly mating. in addition the
population does not suffer drift, selection, mutation or migration.

The principle can easily be generalised to the case with multiple alleles. Suppose that
there are n alleles at a locus

A1, . . . , Ak

and these have population frequencies of A1, . . . , Ak respectively, then under Hardy-
Weinberg equilibrium the frequency of homozygote AiAi is p2

i and the frequency of het-
erozygote AiAj is 2pipj for all values of i, j.

We may be interested in whether a particular population is in Hardy-Weinberg equilibrium,
or if not, how much (in some sense) that it deviates from it. We shall explore different
methods of testing for this.

16.2 The chi-square test

One way of testing for hardy-Weinberg equilibrium is to use the chi-square test that we
saw last term in the general context of tabular data. Below we reproduce a revised version
of the table from Section 7. In this case we have the entry Yij i ≤ j representing the
number of individuals with genotype AiAj . The table has the same number of rows and
columns (equal to the total number of alleles k). Since AiAj and AjAi are the same, we
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only need a single category, and we choose the row i column j entry for i < j. The total
number of individuals is thus

N =
∑

i≤j

Yij

Y11 Y12 . . . Y1k

Y21 Y22 . . . Y2k

- - . . . . . .
- - - Ykk

The null hypothesis is that the population is in Hardy-Weinberg equilibrium.

Under H0 the statistic is

Q =
k∑

i=1

k∑

j=i

(Oij −Eij)2

Eij

where Oij = Yij is the observed number of individuals with genotype AiAj and Eij is the
expected number of observations in this cell. Eij is found simply by multiplying the total
number of individuals by the probability that a random individual (under Hardy-Weinberg
equilibrium) has that genotype. Hence if we knew the values of pis we would obtain

Eii = p2
i N Eij = 2pipjN i < j

Usually we have to estimate the pis from the data. We estimate pi (the proportion of
allelle Ai in the population) by the proportion of allelle Ai in the sample, which is

p̂i =
∑

i<j Yij +
∑

i>j Yji + 2Yii

2N

Q has approximate distribution χ2 with k(k−1)/2+k−k = k(k−1)/2 degrees of freedom
(the number of cells minus the number of terms estimated from the data).

Example 16.1 - suppose that we have a system with two alleles where the zygotes A1A1,
A1A2 and A2A2 occur in frequencies 19, 52, 27 respectively. In the above notation, this
gives

Y11 = 19, Y12 = 52, Y22 = 27, N = 98

The proportion of allele A1 in our data sample is

52 + 2× 19
2× 98

= 0.4592

and so the proportion of A2 is 1-0.4592=0.5408. Thus our population proportion estimates
are p̂1 = 0.4592 and p̂2 = 0.5408.
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Under the null hypothesis of Hardy-Weinberg equilibrium, the expected frequencies of the
three zygotes are
E11 = 98(0.4592)2 = 20.66
E12 = 2× 98(0.4592)(0.5408) = 48.67
E22 = 98(0.5408)2 = 28.66

Q =
k∑

i=1

k∑

j=i

(Oij − Eij)2

Eij
=

(19− 20.66)2

20.66
+

(27− 28.66)2

28.66
+

(52− 48.67)2

48.67
= 0.457

This should be χ2
1. The 95% point of this distribution is 3.84 > 0.457. So we do not reject

the null hypothesis that the population is in Hardy-Weinberg equilibrium.

16.3 Fisher’s exact test

Fisher’s exact test is a version of the Likelihood Ratio Test, useful especially when some
categories contain small numbers. The likelihood function when Hardy-Weinberg equilib-
rium is not assumed is ∏

i=1,j≥i

q
Yij

ij

where there are no restrictions on the values of qij , except that they all add to 1. When
there are 2 alleles, this becomes

qY11
11 qY12

12 qY22
22

Under the null hypothesis of Hardy-Weinberg equilibrium, qij , i 6= j is replaced by 2pipj

and qii by p2
i and for two alleles the likelihood function becomes

p2Y11(2p(1− p))Y12(1− p)2Y22

where p is the frequency of A1 in the population.

We proceed to find the maximum likelihood function under the null hypothesis, and with-
out restrictions. The ratio of these two is the likelihood ratio Λ.

It can be shown that with no restriction, the maximum likelihood estimates (the third is
implied by the other two, since all probabilities must add to 1) are

ˆq11 =
Y11

N
, ˆq12 =

Y12

N
, ˆq22 =

Y22

N

and so the likelihood function is
(

Y11

N

)Y11
(

Y12

N

)Y12
(

Y22

N

)Y22
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Under the null hypothesis the maximum likelihood estimate of p is

p̂ =
Y11 + Y12/2

N

and the corresponding likelihood function is

(
Y11 + Y12/2

N

)2Y11+Y12 (
Y22 + Y12/2

N

)2Y22+Y12

2Y12

−2log(Λ) can be shown to be

2(Y11log(Y11) + Y12log(Y12/2) + Y22log(Y22) + Nlog(N)

−(2Y11 + Y12)log(Y11 + Y12/2)− (2Y22 + Y12)log(Y22 + Y12/2))

Under the hypothesis of Hardy-Weinberg equilibrium, this quantity has an approximate
χ2

1 distribution.

Considering the above example with Y11 = 19, Y12 = 52, Y22 = 27, N = 98

−2log(Λ) = (19log(19)+52log(26)+27log(27)+98log(98)−90log(45)−106log(53)) = 0.458

0.458 < 3.84 similarly to above, so we do not reject the null hypothesis of Hardy-Weinberg
equilibrium.

16.4 Estimating the Hardy-Weinberg disequilibrium

We have seen above how to test to see whether Hardy-Weinberg equilibrium is plausible
for a given set of data. What if it is not (or you think that it may well not be true) so
that you wish to estimate the degree of disequilibrium? An estimate can be found by
comparing the true proportion of the heterozygote AB, with the predicted level if it was
under Hardy-Weinberg. The disequilibrium is defined as half of this difference

D =
1
2

(
Y12

N
− 2p̂(1− p̂)

)

We can find an approximate confidence interval by using the Hardy-Weinberg proportions
to estimate the variance of Y12/2N . This estimate is

p̂(1− p̂)
4N
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So that the 95% confidence interval is

D − 1.96

√
p̂(1− p̂)

4N
,D + 1.96

√
p̂(1− p̂)

4N

Thus in our example above,

D =
1
2

(
52
98
− 2× 0.4592(1− 0.4592)

)
= 0.0170

and the 95% confidence interval is

D − 1.96

√
0.4592(1− 0.4592)

4× 98
, D + 1.96

√
0.4592(1− 0.4592)

4× 98
= (−0.0323, 0.0663)
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17 Phylogenetic trees and evolutionary models I

17.1 Introduction to phylogenetic trees

The evolutionary relationships between a set of species with a common ancestor can be
represented by a binary tree, as we see in the following figure. Species are represented by
points (nodes) connected by lines (edges).

FIGURE 17.1

The lengths of the edges represent evolutionary time, the longer an edge, the more time
separates the nodes at the ends of the edge. The trees in Figure 17.1 are examples of
rooted trees, where there is a single root node representing the common ancestor. An
unrooted tree indicates the relationship between species without showing the direction of
evolutionary time, as in Figure 17.2.

FIGURE 17.2

For a set of species there will be some real, unknown, phylogenetic tree connecting the
members. Our aim is in infer what this tree is as accurately as possible, given the data.
We shall look at several methods of doing this.

17.2 Distances

Several methods and algorithms are based on the concept of a distance between species.
The most natural measure of distance between two species is the number of years since
their most recent common ancestor. This is usually unknown, so in practice we have to
use a surrogate distance in its place.

let us assume that exact distances are known. For a set of points S, any measure of
distance d must satisfy the following for all elements x, y, z in S.

(i)d(x, y) ≥ 0

(ii)d(x, y) = d(y, x)

(iii)d(x, y) ≤ d(x, z) + d(z, y)

A distance is a tree-derived distance if there is a tree with these species at the leaves such
that the distance between x and y is the sum of the lengths of the edges joining them.
This automatically satisfies (i)− (iii) above. In fact it turns out that (iii) becomes

(iii)d(x, y) < d(x, z) + d(z, y)
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for such a tree.

For rooted trees joining extant species (non-extinct, so being measured at identical times)
there are further restrictions. For the tree in Figure 17.3 the conditions
d(x, y) = d(x, z)
and d(y, z) < d(x, y), d(y, z) < d(x, z)
must hold.

FIGURE 17.3

Any distance measure which satisfies the condition that for any three members x, y, z of
S, two of the three distances between them are equal and the third is smaller than these
two, as above, is called ultrametric. So a rooted tree of extant species with a tree-derived
distance is always ultrametric.

17.3 Tree reconstruction: the ulttrametric case

We shall give an outline of how to show that if an ultrametric distance measure is given
for all species then there is a unique rooted tree joining the species (except for trivial
changes).

Suppose that we have a set of species s1, s2, . . . , sn with an ultrametric distance measure
d(x, y) between each pair of species x and y.

We shall use an induction argument to show the existence of a unique tree. For only two
species, then both must be the same distance from the root and we obtain the following
tree.

FIGURE 17.4

Suppose that we can find a unique tree (except for trivial changes like swapping s1 and
s2 in the above) for m species. If we can show that under this assumption we can do the
same for m + 1 then we can do it for any number (we can find a tree for 2, and so for
2+1=3, and so for 3+1=4 etc.). For our m species, there is a single root, with a collection
of species (labelled SL) down the left hand branch, and another collection (SR) down the
right-hand one. Let x be some element of SL and y some element of SR.

FIGURE 17.5

Now consider the extra species sm+1 and its distance from x and y. The ultrametric
property indicates that one of x, y and sm+1 is equidistant from the other 2. Thus there
are three possibilities:
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(1)d(sm+1, x) = d(sm+1, y) > d(x, y)

leads to the following tree (where a = d(sm+1, x)/2 and b = (d(sm+1, x)− d(x, y))/2)

FIGURE 17.6

We thus have the correct distances between x, y and sm+1. It is not hard to show that
this must also work for every other species as well.

(2)d(sm+1, y) = d(x, y) > d(sm+1, x)

This puts the species sm+1 on the same side of the root as SL. If sm+1 is equidistant from
every member of SL we get the following tree

FIGURE 17.7

If not, sm+1 is closer to some members of SL than others, and we can follow similar
arguments within SL to find its correct place.

The third case is
(3)d(sm+1, x) = d(x, y) > d(sm+1, y)

Case (3) is the same as case (2), just with SR and SL interchanged.

17.4 Tree reconstruction: neighbour joining

Two species are neighbours if the path between them contains only one node. Thus in the
following tree, x and y are neighbours, but x and z are not.

FIGURE 17.8

The following describes the UPMGA (unweighted pair group method using arithmetic
averages) algorithm. The algorithm describes distances between groups of species, starting
with ‘groups’ of a single species.

We define the distance between groups u and v as

d∗(Gu, Gv) =
1

n1n2

∑

x∈Gu,y∈Gy

d(x, y)

where n1 and n2 are the sizes of groups Gu and Gv. We find the smallest distance between
two groups, and join them with a two-leaf rooted tree, with root ”species” r1 as follows
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FIGURE 17.9

The distance from any node z to this root is given by;

d(r1, z) =
1
2
(d(x, z) + d(y, z)− d(x, y))

We now replace the two groups Gr and Gs by the group Grs containing the elements of
both groups. We repeat the above procedure, now with one group less, until eventually
we have a complete tree.

The neighbour-joining algorithm is a more complex procedure, based upon the function

δ(x, y) = (N − 4)d(x, y)−
∑

z 6=x,y

(d(x, z) + d(y, z))

It can be shown that this reaches its minimum value if and only if x and y are neighbours,
so that the algorithm joins such pairs immediately. Distances from the node (r1) joining
any such pairs are now calculated, again using;

d(r1, z) =
1
2
(d(x, z) + d(y, z)− d(x, y))

Exercise: Repeat E3 using the neighbour-joining algorithm, instead of the UPGMA.

17.5 Surrogate distances

Unfortunately it is rarely the case that exact distances between species are known, and we
must use surrogate distances instead. These are usually derived using DNA information
from the species being considered. Evolutionary changes can happen faster along one
branch than another for a number of reasons, for example different generation lengths, so
we may obtain a tree like Figure 17.10.

FIGURE 17.10

In this example the molecular clock ran slower for the elephant than the others. A sur-
rogate distance is often found by using aligned DNA sequences taken from two species,
where the distance is proportional to

−log

(
1− 4

3
p

)

where p is the proportion of nucleotides where the two sequences differ. This estimate
derives from the Jukes-Cantor model, which we shall meet in the next section. We can then
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use the methods that we have already described to estimate the tree with the surrogate
distances instead of the distances (note that the basic properties of a distance (i)-(iii) may
not be satisfied, so that negative distances can appear in the inferred trees). Quite often
more complex versions of this type of idea need to be used.

17.6 Tree reconstruction: parsimony

Using the method of parsimony, a cost is assigned to each tree, and the optimal tree is
the one which minimises the cost. The aim is to find the optimal tree topology.

Consider the cost function where unit cost is made for each nucleotide substitution. We
find the optimal tree in two steps. Firstly all possible tree topologies must be listed, with
species allocated to the leaves. Secondly, for each such choice, the labelling of all internal
nodes with a suitable DNA sequence, to ensure minimisation of the cost must be found
(this is done using Fitch’s algorithm).

For a large number of species, the first step is the hardest. For three species there is only
one possible topology, with three labelling choices. The following figure shows the five
optimal allocations of internal nodes for the simplistic sequences AA,AB and BB.

FIGURE 17.11

The number of topologies increases rapidly with species number. For example, for 20
species there are 8×1021 topologies. It is possible to use versions of the above methodology
on very large numbers of species. The distinctive feature of this method is that it does
not construct distances between species, only the topology.
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18 Phylogenetic trees and evolutionary models II

18.1 Introduction to evolutionary models

We shall introduce some models of the evolution of biological data which will be useful
for the construction of phlyogenetic trees. We shall assume that there is one dominant
nucleotide at any given site for a particular species, so that each species has its own
”genome”. Over time the nucletides at any site may change; such changes are assumed
to occur over negligible times (in evolutionary time this is reasonable). Such a change is
called a substitution.

18.2 The Jukes-Cantor model

The simplest model of nucleotide substitution is the jukes-Cantor model. The discrete
time version considers a Markov chain with four states a, g, c, t with a transition matrix
(probability of moving from one state to another in unit time) given by

P =

1− 3α α α α
α 1− 3α α α
α α 1− 3α α
α α α 1− 3α

(10)

The value of α will obviously depend upon the chosen timescale. Thus whatever nulceotide
exists at whichever site, it is equally likely to be substituted by any of the other three.

The stationary distribution of this Markov chain is just
φ = (0.25, 0.25, 0.25, 0.25).
It is possible to show that after n steps the transition matrix Pn is

Pn =

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

(11)

+(1− 4α)n

0.75 −0.25 −0.25 −0.25
−0.25 0.75 −0.25 −0.25
−0.25 −0.25 0.75 −0.25
−0.25 −0.25 −0.25 0.75

(12)
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Thus, whatever the dominant nucleotide at time 0, the probability that it is still the
dominant one at time n is

0.25 + 0.75(1− 4α)n

and the probability that it is any specific other one is

0.25− 0.25(1− 4α)n

18.3 The Kimura models

The assumption that all transitions between nucleotides are equally likely is unrealistic,
and some are more likely than others. In particular, transitions between a and g, and
between c and t are more common than the others. Kimura’s first model, allows for two
different trnasition probabilities to occur; α is the probability of moving between a and g,
or c and t and other changes have rate β. Thus the transition matrix becomes

P =

1− α− 2β α β β
α 1− α− 2β β β
β β 1− α− 2β α
β β α 1− α− 2β

(13)

The stationary distribution of this Markov chain can again be shown to be the simple
equal probability one,
φ = (0.25, 0.25, 0.25, 0.25).
As in the Jukes-Cantor model, we can find the transition matrix Pn.

Pn =

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

(14)

+(1− 4β)n

0.25 0.25 −0.25 −0.25
0.25 0.25 −0.25 −0.25
−0.25 −0.25 0.25 0.25
−0.25 −0.25 0.25 0.25

(15)

+(1− 2(α + β))n

0.5 −0.5 0 0
−0.5 0.5 0 0

0 0 0.5 −0.5
0 0 −0.5 0.5

(16)
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Thus, whatever the dominant nucleotide at time 0, the probability that it is still the
dominant one at time n is

0.25 + 0.25(1− 4β)n + 0.5(1− 2(α + β))n

The probability that it has been replaced by its ”partner” (e.g. a by g) is

0.25 + 0.25(1− 4β)n − 0.5(1− 2(α + β))n

and the probability that it is a specific one of the other two is

0.25− 0.25(1− 4β)n

There are other more complex Kimura models where each of the substitution probabilities
differ, but we shall not look at those here. The Felsenstein Model and the HKY Model
are two further generalisations on the same theme using Markov transition matrices for
nucleotide substitutions.

The Felsenstein model generalises the Jukes-Cantor model in a different way. It recognises
that the equilibrium distribution of nulceotides is often not uniform i.e. (0.25,0.25,0.25,0.25)
and so gives a transition matrix which gives the equilibrium distribution (φa, φg, φc, φt)
for any such values. This matrix is

P =

1− u + uφa uφg uφc uφt

uφa 1− u + uφg uφc uφt

uφa uφg 1− u + uφc uφt

uφa uφg uφc 1− u + uφt

(17)

It is not too hard to verify that the stationary distribution of this matrix is indeed
(φa, φg, φc, φt)

The HKY Model is a further generalisation, with features from both the Kimura and
Felsenstein models (these are both special cases of it). The transition matrix is given by

P =

1− uφg − vφc − vφt uφg vφc vφt

uφa 1− uφa − vφc − vφt vφc vφt

vφa vφg 1− uφt − vφa − vφg uφt

vφa vφg uφc 1− uφc − vφa − vφg

(18)

Exercise: Show that the HKY model has the required stationary distribution.

In addition, each of these models can be converted to continuous time models quite easily,
with transition probabilities being replaced by transition rates.

85



18.4 Tree reconstruction: maximum likelihood

Suppose that we already have the topology of the tree, and we are interested in estimating
the various lengths of the edges. Finding a likelihood function is relatively straightforward,
given an evolutionary model. Thus we choose our model (for instance the Jukes-Cantor
model). As an example, suppose that we have data from 5 species, which are arranged in
the following tree.

FIGURE 18.1

At a particular collection of sites the nucleotide present for each of the species is known
(and we assume that this is all that is known). We shall follow one such site, and label the
nucleotides of the five species as A1, A2, A3, A4 and A5 (some of these can of course be the
same). In the tree there are nine nodes, and our likelihood function will be a product of 9
terms. Firstly the probability that W is the nucleotide at node n0 is written as φW (taken
from the its overall frequency in the population). There are eight arms leading from one
node to another; each has an associated probability of a change from the nucleotide at
the start node to the one at the end in the time given by the length of the node. For
example, the probability that a change from nucleotide X at node n1 to A3 at node s3

is labelled PXA3(l4). If the nucleotides at the internal nodes n1, n2 and n3 are X, Y and
Z respectively, then the likelihood for our arm lengths AND these nucleotides at the root
and internal nodes is given by

φW PWX(l1)PWZ(l2)PXY (l3)PXA3(l4)PY A2(l5)PY A1(l6)PZA4(l7)PZA5(l8)

We now compute the above formula for the 44 = 256 possible combinations of nucleotides
at the root and the internal nodes, and the sum of all of these terms is the likelihood of
the arm lengths l1, l2, . . . , l8.

This procedure is now repeated over all the sites that we possess information on, and a
full likelihood function is found, which is just the product of all the likelihood functions
at the single sites.

We can, in principle, repeat this for all tree topologies, and then find the largest of these
likelihood functions, which will be from the tree which becomes our maximum likelihood
estimator. Of course, as with the other methods, when the number of species is large, this
can be very complex.

Felsenstein suggested a plan of building a tree (unrooted) by starting with two species
and adding other species successively. If at any stage there are k − 1 species, it turns out
that there are 2k − 5 ways of adding a further species. Each of these should be tried in
turn and that with the maximum likelihood accepted. This does not necessarily lead to
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the tree at the end of the process with maximum likelihood, and different trees can be
obtained with different starting species. Different orders can be tried, and the final result
with the biggest likelihood accepted.

It has been noticed that for real data sets, simplified evolutionary models like those that
we have discussed can give rise to severe errors in the estimation of branch lengths. In-
creasingly complex evolutionary models (for instance Kimura’s model is more complex
than the Jukes-Cantor one, which is a special case of it) improve matters somewhat, but
significant errors can still occur . Thus sometimes it is necessary to work with the more
complex models.

The following example is taken from Ewens and Grant and illustrates the modelling of the
evolutionary relationship between 14 different mammals. These are as follows:
Marsupial Mole, Wombat, Rodent, Elephant Shrew, Elephant, Whale, Dolphin, Pig,
Horse, Bat, Insectivore, Human, Sea Cow, Hyrax.
The sequences for the 14 species are in Ewens and Grant, page 405. The distances between
the species were found using the Kimura model of the previous section, and are given in
the following table.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 ma. mole 0 .11 .41 .44 .39 .37 .40 .37 .41 .36 .40 .37 .42 .39
2 wombat .11 0 .39 .40 .36 .33 .35 .33 .35 .32 .33 .33 . 38 .34
3 rodent .41 .39 0 .33 .30 .24 .25 .22 .28 .23 .25 .23 .32 .31
4 el. shrew .44 .40 .33 0 .20 .26 .26 .25 .28 .28 .28 .26 .20 .21
5 elephant .39 .36 .30 .20 0 .22 .23 .22 .25 .25 .24 .21 .11 .12
6 whale .37 . 33 . 24 . 26 . 22 0 .03 .10 .16 .17 .18 .17 .22 .24
7 dolphin .40 .35 .25 .26 .23 .03 0 .11 .16 .19 .18 .17 .22 .25
8 pig .37 .33 .22 .25 .22 .10 .11 0 .17 .18 .19 .17 .24 .24
9 horse .41 .35 .28 .28 .25 .16 .16 .17 0 .17 .21 .20 .25 .26
10 bat .36 .32 .23 .28 .25 .17 .19 .18 .17 0 .15 .20 .27 .27
11 insectiv. .40 .33 .25 .28 .24 .18 .18 .19 .21 .15 0 .19 .26 .26
12 human .37 .33 .23 .26 .21 .17 .17 .17 .20 .20 .19 0 .22 .23
13 sea cow .42 .38 .32 .20 .11 .22 .22 .24 .25 .27 .26 .22 0 .14
14 hyrax .39 .34 .31 .21 .12 .24 .25 .24 .26 .27 .26 .23 .14 0

Four different methods were used to find the optimal phylogenetic tree using the distances
from the above table. The methods were UPGMA, neighbour-joining, parsimony and
maximum likelihood. The trees found using these methods are shown in Figure 18.1.

FIGURE 18.2

Some features are common to the trees formed by all four methods, whereas others vary
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from tree to tree. Thus the relationship between horse, pig, whale and dolphin is the same
for all four trees. There are large differences in the placement of humans, however. In the
UPGMA tree, ‘human’ is grouped with horse,pig, whale and dolphin; in the neighbour
joining tree it is not that closely linked to those types. The parsimony tree puts humans in
the same group as elephant, sea cow, hyrax and elephant shrew. The maximum likelihood
tree places humans and rodents together.
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19 Evolutionary and Genetic Algorithms

Evolutionary algorithms are stochastic searching models which are based upon the pro-
cesses of evolution. They may be used to model actual evolutionary processes, and this is
what we will assume in this section, but also to model completely different situations. For
instance the classical travelling salesman problem can be approached using evolutionary
algorithms.

Genetic algorithms are a special class of evolutionary algorithms and we will use the terms
interchangeably from now on. The basic structure of a genetic algorithm is as follows.
There will be a set of optimisation criteria in place to determine whether we have reached
a suitable solution to our problem (or evolved to a stable population).

FIGURE 19.1

Step 1: Generate an initial population of individuals. This will usually be done completely
randomly, with no thought given to the ‘fitness’ of individuals.

Step 2: Are the optimisation criteria met? If so we stop the process. This is extremely
unlikely to happen at the start of the process. If they are not met we continue.

Step 3: Generate a new population. This is done in a number of steps. Not all have to be
included in any particular process, but all are needed to replicate a real genetic population
(although leaving some out may lead to broadly similar conclusions).

Step 3a: Selection occurs according to the fitness of the individual to decide which indi-
viduals reproduce.

Step 3b: Recombination. Parents are recombined to produce offspring.

Step 3: Mutation. all offspring will be mutated with a certain probability.

We can then compute the fitness of the offspring and replace the parents with the offspring
as the members of the population.

Step 4: Are the optimisation criteria met? If so the process stops, as in step 2. if they are
not, then step 3 is repeated with the ‘new’ population replacing the original at the start,
and undergoing further selection, recombination and mutation.

Evolutionary algorithms thus operate in a similar way to the more traditional optimisation
methods, but there are differences. The major differences are that evolutionary algorithms
are probabilistic rather than deterministic (and information such as derivatives are not
needed) and that at any point the process is not at a point but at a set of points (a
population).
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We will now consider the main parts of the process of the evolutionary algorithm in turn.

19.1 Selection

The selection step chooses which individuals generate new offspring in the next generation
and is the most fundamental step in the process. To perform selection, we must have a
measure of fitness of each individual. Each individual in the population has a reproduction
probability based upon their own objective fitness value, and on that of all the other
individuals in the population.

Thus the probability of any new individual being a copy of type i is Pi(f1, f2, . . . , fn) for
some function Pi such that

n∑

i=1

Pi(f1, f2, . . . , fn) = 1

We talk in terms such as selective pressure the relative probability of the best individual
being chosen compared to the average probability of selection, and loss of diversity which
is the proportion of individuals in a population that are not selected at all (and so have
no offspring) by the above method.

The simplest form of selection is what is known as roulette wheel selection or stochastic
sampling with replacement. If there are n individuals in our current population with
fitnesses f1, f2, . . . , fn as above, and we wish to generate m new individuals for our mating
population (i.e. that prior to recombination) in our next population we choose each of
these m independently where each of a copy of individual i with probability

Pi(f) =
fi

f1 + f2 + . . . + fn

Thus the number of individuals in the mating population who are copies of individual i
follows a Binomial distribution with parameters m and Pi(f).

There are many other types of selection; for example individuals can be placed spatially in
an environment and selection occurs within local groups, so that characteristics can vary
considerably between localities.

19.2 Recombination

The selection process has generated a mating population. Individuals are now paired
according to some rule; completely at random, according to whether an individual has
been designated male or female (and then at random) or within the locality for example.
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When a pair is chosen, they have to generate offspring.

Let us suppose that individual 1 is described by the the sequence (we shall refer to this as
the genome of the individual)

t11, t12, . . . , t1k

and individual 2 by
t21, t22, . . . , t2k

(for the purposes of our process k may be 1 or 2 or much more, typically each value
representing an allele of some gene).

This recombination (random recombination) can be done simply by choosing the first
element from the sequence for the offspring to be t11 or t21 each with probability 0.5, and
similarly for each other value, all independently of each other. So our new individual is
generated as in the following figure.

FIGURE 19.2

When our elements are continuous values, we can generate new elements by using a linear
combination of the parental values, so that the ith element is

αit1i + (1− αi)(1− t2i)

where αi is an observation from a uniform (0,1) distribution. There are other variants on
this idea.

An alternative method is the crossover method, which takes into account the correlation
between genes on the same chromosome. For instance, the single-point crossover chooses a
value at random from the list of positions 0, 1, . . . , k and then creates two new individuals.
If the chosen value is j, then our two new individuals would be

t11, t12, . . . , t1j , t2j+1, . . . , t2k

and
t21, t22, . . . , t2j , , t1j+1, . . . , t1k

There are, again, many variants on this idea.

19.3 Mutation

We thus have a population of new individuals who are perfect copies of a combination of
their two parents. There will be many genomes which can never be reached by selection
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and recombination alone; and they might be the fittest. Mutations prove very useful in
helping to find the best genomes.

Mutations are random alterations in individuals. The mutation rate is related to the
probability of a change in any given element of the genome of the individual. Generally
to obtain good results, this mutation rate should decrease with the number of variables in
the genome of our individuals; if there are n elements in the genome, a mutation rate of
1/n is sensible.

How mutations should occur, in the sense of which allele should be generated when a
mutation occurs from a given allele, depends upon the form of alleles. If they are continu-
ous values, or form a sequence of discrete values where there is an obvious ordering, then
generally mutations should be small in size most of the time, but occasionally of large size.

For instance for continuous data, the mutation distance can be normally distributed,
possibly centred on the original value (but possibly not). Thus if we start at allele t, then
there is no mutation with probability 1−r and a mutation occurs with probability r which
sends t to s where the value of s follows a normal distribution with mean t and variance
σ2, where σ2 is a measure of the size of mutations, the larger σ2, the larger mutation
distances tend to be.

19.4 Fitness values

After a cycle of selection, recombination and mutation, we finally have a new generation.
At the start of the section on selection, we talked about the fitnesses fi of individuals.
These are in reality properties of the genome of the individual and the should be a general
function of the genome which is its fitness. It could be something simple like the sum of
the genetic components t11 + t12 + . . . + t1k, for our first individual from before, so the
larger the values of each t1i the better, but will usually be something more complicated
which it is difficult to see how to optimise.

The fitness of real genetic situations is of course very complex, but this is also true for the
other types of problem that the genetic algorithm can be applied to, such as the travelling
salesman problem.

The process continues until we find a satisfactory stopping point (perhaps the difference
between the fittest and least fit individual is so small that all diversity is lost, barring
mutations). The nature of the process means that this will generally occur at a point of
high population fitness (but of course not necessarily the highest possible such point).
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20 Dynamic programming

20.1 Introduction

Dynamic programming is a method of solving problems that are apparently complex but
highly structured, by making use of the structure. The general approach is to break the
problem down into subproblems and build the final solution using the solutions to each of
the subproblems.

This type of approach is ideal for computers as it typically involves the repetition of many
fairly straightforward calculations. One application of this idea is in games where there are
sequential decisions to be made and where it is possible to identify all of the end-points of
the game. The best strategy at each point depends upon what the best reply is; the game
can be solved by working backwards from all of the possible final positions (backwards
induction). Noughts and crosses can be completely solved in this way, but theoretically
so could far more complex games like chess, if computers were powerful enough.

We shall consider one example of this approach that we met briefly in Section 13, which
deals with the alignment of two DNA or protein sequences.

20.2 The Needleman Wunsch algorithm

The input for the Needleman Wunsch algorithm consists of two sequences

x = X1X2 . . . Xm, y = Y1Y2 . . . Yn

of lengths m and n respectively. The elements of these sequences belong to some given
alphabet of N symbols (N = 4 for DNA sequences and N = 20 for protein sequences).
In addition there is a linear gap penalty d, and a given substitution matrix S (e.g. for
DNA data the score of an alignment between an a and a g would be the element in row
1, column 2 of this matrix).

We find a highest scoring alignment for two sequences, based upon the highest-scoring
alignments of smaller subsequences of x and y.

Denote the segment of the first i elements of x by x1,i, and the segment of the first j
elements of y by y1,j i.e.

x1,i = X1X2 . . . Xi y1,j = Y1Y2 . . . Yj

Label a highest scoring alignment of x1,i and y1,j by B(i, j) for i = 0, 1, . . . ,m and j =
0, 1, . . . , n. When j = 0 (or i = 0) this is just the alignment of a sequence of elements
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against the appropriate number of gaps (each scoring −d), so that

B(i, 0) = −id, B(0, j) = −jd

We also set B(0, 0) = 0.

if we can find all of the B(i, j) we have an (m + 1) × (n + 1) matrix, where the entry in
the last row and column, B(m,n) is a highest-scoring alignment of the two full sequences.

From above we already know B(i, 0) and B(0, j) for all i and j, and we can thus proceed
recursively to find B(i, j) in terms of the three elements directly ”behind” it,
B(i− 1, j − 1), B(i− 1, j) and B(i, j − 1).

Firstly note that a highest scoring alignment can end in three ways. Either
(i) Xi is paired with Yj ,
(ii) Xi is paired with a gap −, or
(iii) a gap − is paired with Yj .

In (i) B(i, j) equals the score of the best alignment between x1,i−1 and y1,j−1 plus an
extra term for the match between Xi and Yj which we label s(i, j), the element from
the substitution matrix which corresponds to the elements Xi and Yj (thus for DNA if
Xi = Yj = a s(i, j) is the element in row 1 and column 1 of the matrix). Thus we would
have
B(i, j) = B(i− 1, j − 1) + s(i, j).
In (ii) B(i, j) equals the score of the best alignment between x1,i−1 and y1,j plus an extra
term −d for the alignment of Xi with a gap, so that B(i, j) = B(i, j − 1)− d.
In (iii) similar reasoning gives
B(i, j) = B(i− 1, j)− d.

The best alignment is of course the best of these three possibilities, and so

B(i, j) = max{B(i− 1, j − 1) + s(i, j), B(i− 1, j)− d,B(i, j − 1)− d}

Using this method we obtain the value of B(m,n). Thus we can find the best possible
score with certainty.

The problem is that the running time for this algorithm is of the order mn, so that for
very large sequences the time involved can be unrealistically large.

We shall conclude this section (and the course) with a simple example of how the process
works.

EXAMPLE
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Example: Let x = gaatct, y = catt so that m = 6 and n = 4. We use the simple scoring
system of +1 for a match, -1 for a mismatch (the matrix S is 4× 4 with every element on
the leading diagonal 1, and all others -1) and d = −2.

the application of the Needleman Wunsch algorithm is shown in the following figure.
Arrows show where each element comes from (in each case there are three possibilities).

FIGURE 20.1

Following the bold arrows gives a highest-scoring alignment, shown below.

g a a t c t
c − a t − t

Note that sometimes more than one arrow comes from a cell, indicating that two possibil-
ities give the same score. By following alternative paths, other highest-scoring alignments
can be found, e.g.

g a a t c t
− c a t − t
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